Close Notification

Your cart does not contain any items

Operation and Modeling of the MOS Transistor

Yannis Tsividis Colin McAndrew (Freescale Semiconductor)



We can order this in for you
How long will it take?


Oxford University Press Inc
29 June 2010
Electrical engineering; Transistors
Operation and Modeling of the MOS Transistor has become a standard in academia and industry. Extensively revised and updated, the third edition of this highly acclaimed text provides a thorough treatment of the MOS transistor--the key element of modern microelectronic chips.
By:   Yannis Tsividis, Colin McAndrew (Freescale Semiconductor)
Imprint:   Oxford University Press Inc
Country of Publication:   United States
Edition:   3rd edition
Dimensions:   Height: 236mm,  Width: 193mm,  Spine: 33mm
Weight:   1.315kg
ISBN:   9780195170153
ISBN 10:   0195170156
Pages:   752
Publication Date:   29 June 2010
Audience:   College/higher education ,  Primary
Format:   Paperback
Publisher's Status:   Active
PREFACE CHAPTER 1: REVIEW OF FUNDAMENTALS AND MOSFET OVERVIEW 1.1 Introduction 1.2 Semiconductors 1.2.1 Intrinsic Semiconductors, Free Electrons, and Holes 1.2.2 Extrinsic Semiconductors 1.2.3 Equilibrium in the Absence of Electric Field 1.2.4 Equilibrium in the Presence of Electric Field 1.2.5 Nonequilibrium; Quasi-Fermi Levels 1.2.6 Relations between Charge Density, Electric Field, and Potentials; Poisson's Equation 1.3 Conduction 1.3.1 Transit Time 1.3.2 Drift 1.3.3 Diffusion 1.3.4 Total Current 1.4 Contact Potentials 1.5 The pn Junction 1.6 Overview of the MOS Transistor 1.6.1 Basic Structure 1.6.2 A Qualitative Description of MOS Transistor Operation 1.6.3 A Fluid Dynamical Analog 1.6.4 MOS Transistor Characteristics 1.7 Fabrication Processes and Device Features 1.8 A Brief Overview of This Book References Problems CHAPTER 2: THE MOS CAPACITOR 2.1 Introduction 2.2 The Flatband Voltage 2.3 Potential Balance and Charge Balance 2.4 Effect of Gate-Body Voltage on Surface Condition 2.4.1 Flatband Condition 2.4.2 Accumulation 2.4.3 Depletion and Inversion 2.4.4 General Analysis 2.5 Accumulation and Depletion 2.6 Inversion 2.6.1 General Relations and Regions of Inversion 2.6.2 Strong Inversion 2.6.3 Weak Inversion 2.6.4 Moderate Inversion 2.7 Small-Signal Capacitance 2.8 Summary of Properties of the Regions of Inversion References Problems CHAPTER 3: THE THREE-TERMINAL MOS STRUCTURE 3.1 Introduction 3.2 Contacting the Inversion Layer 3.3 The Body Effect 3.4 Regions of Inversion 3.4.1 Approximate Limits 3.4.2 Strong Inversion 3.4.3 Weak Inversion 3.4.4 Moderate Inversion 3.5 A V[C[B Control Point of View 3.5.1 Fundamentals 3.5.2 The Pinchoff Voltage References Problems CHAPTER 4: THE FOUR-TERMINAL MOS TRANSISTOR 4.1 Introduction 4.2 Transistor Regions of Operation 4.3 Complete All-Region Model 4.4 Simplified All-Region Models 4.4.1 Linearizing the Depletion Region Charge 4.4.2 Body-Referenced Simplified All-Region Models 4.4.3 Source-Referenced Simplified All-Region Models 4.4.4 Charge Formulation of Simplified All-Region Models 4.5 Models Based on Quasi-Fermi Potentials 4.6 Regions of Inversion in Terms of Terminal Voltages 4.7 Strong Inversion 4.7.1 Complete Strong-Inversion Model 4.7.2 Body-Referenced Simplified Strong-Inversion Model 4.7.3 Source-Referenced Simplified Strong-Inversion Model 4.7.4 Model Origin Summary 4.8 Weak Inversion 4.8.1 Special Conditions in Weak Inversion 4.8.2 Body-Referenced Model 4.8.3 Source-Referenced Model 4.9 Moderate-Inversion and Single-Piece Models 4.10 Source-Referenced vs. Body-Referenced Modeling 4.11 Effective Mobility 4.12 Effect of Extrinsic Source and Drain Series Resistances 4.13 Temperature Effects 4.14 Breakdown 4.15 The p-Channel MOS Transistor 4.16 Enhancement-Mode and Depletion-Mode Transistors 4.17 Model Parameter Values, Model Accuracy, and Model Comparison References Problems CHAPTER 5: SMALL-CHANNEL AND THIN OXIDE EFFECTS 5.1 Introduction 5.2 Carrier Velocity Saturation 5.3 Channel Length Modulation 5.4 Charge Sharing 5.4.1 Introduction 5.4.2 Short-Channel Devices 5.4.3 Narrow-Channel Devices 5.4.4 Limitations of Charge-Sharing Models 5.5 Drain-Induced Barrier Lowering 5.6 Punchthrough 5.7 Combining Several Small-Dimension Effects into One Model--A Strong-Inversion Example 5.8 Hot Carrier Effects; Impact Ionization 5.9 Velocity Overshoot and Ballistic Operation 5.10 Polysilicon Depletion 5.11 Quantum Mechanical Effects 5.12 DC Gate Current 5.13 Junction Leakage; Band-to-Band Tunneling; GIDL 5.14 Leakage Currents--Particular Cases 5.15 The Quest for Ever-Smaller Devices 5.15.1 Introduction 5.15.2 Classical Scaling 5.15.3 Modern Scaling References Problems CHAPTER 6: LARGE-SIGNAL MODELING OF THE MOS TRANSISTOR IN TRANSIENT OPERATION 6.1 Introduction 6.2 Quasi-Static Operation 6.3 Terminal Currents in Quasi-Static Operation 6.4 Evaluation of Intrinsic Chargers in Quasi-Static Operation 6.4.1 Introduction 6.4.2 Strong Inversion 6.4.3 Moderate Inversion 6.4.4 Weak Inversion 6.4.5 All-Region Model 6.4.6 Depletion and Accumulation 6.4.7 Plots of Charges vs. V[G[S 6.5 Transit Time under DC Conditions 6.6 Limitations of the Quasi-Static Model 6.7 Non-Quasi-Static Modeling 6.7.1 Introduction 6.7.2 The Continuity Equation 6.7.3 Non-Quasi-Static Analysis 6.8 Extrinsic Parasitics 6.8.1 Extrinsic Capacitances 6.8.2 Extrinsic Resistance 6.8.3 Temperature Dependence 6.8.4 Simplified Models References Problems CHAPTER 7: SMALL-SIGNAL MODELING FOR LOW AND MEDIUM FREQUENCIES 7.1 Introduction 7.2 A Low-Frequency Small-Signal Model for the Intrinsic Part 7.2.1 Introduction 7.2.2 Small-Signal Model for the Drain-to-Source Current 7.2.3 Small-Signal Model for the Gate and Body Currents 7.2.4 Complete Low-Frequency Small-Signal Model for the Intrinsic Part 7.2.5 Strong Inversion 7.2.6 Weak Inversion 7.2.7 Moderate Inversion 7.2.8 All-Region Models 7.3 A Medium-Frequency Small-Signal Model for the Intrinsic Part 7.3.1 Introduction 7.3.2 Intrinsic Capacitances 7.4 Including the Extrinsic Part 7.5 Noise 7.5.1 Introduction 7.5.2 White Noise 7.5.3 Flicker Noise 7.5.4 Noise in Extrinsic Resistances 7.5.5. Including Noise in Small-Signal Circuits 7.6 All-Region Models References Problems CHAPTER 8: SMALL-SIGNAL MODELING FOR HIGH-FREQUENCY OPERATION 8.1 Introduction 8.2 A Complete Quasi-Static Model for the Intrinsic Part 8.2.1 Complete Description of Intrinsic Capacitance Effects 8.2.2 Small-Signal Equivalent Circuit Topologies 8.2.3 Evaluation of Capacitances 8.2.4 Frequency Region of Validity 8.3 y-Parameter Models 8.4 Non-Quasi-Static Models 8.4.1 Introduction 8.4.2 A Non-Quasi-Static Strong-Inversion Model 8.4.3 Other Approximations and Higher-Order Models 8.4.4 Model Comparison 8.5 High-Frequency Noise 8.6 Consideration in References Problems CHAPTER 9: SUBSTRATE NONUNIFORMITY AND OTHER STRUCTURAL EFFECTS 9.1 Introduction 9.2 Ion Implantation and Substrate Nonuniformity 9.3 Substrate Transverse Nonuniformity 9.3.1 Preliminaries 9.3.2 Threshold Voltage 9.3.3 Drain Current 9.3.4 Buried-Channel Devices 9.4 Substrate Lateral Nonuniformity 9.5 Well Proximity Effect 9.6 Stress Effects 9.7 Statistical Variability References Problems CHAPTER 10: MODELING FOR CIRCUIT SIMULATION 10.1 Introduction 10.2 Types of Models 10.2.1 Models for Device Analysis and Design 10.2.2 Device Models for Circuit Simulation 10.3 Attributes of Good Compact Models 10.4 Model Formulation 10.4.1 General Consideration and Choices 10.5 Model Implementation in Circuit Simulators 10.6 Model Testing 10.7 Parameter Extraction 10.8 Simulation and Extraction for RF Applications 10.9 Common MOSFET Models Available in Circuit Simulators 10.9.1 BSIM 10.9.2 EKV 10.9.3 PSP 10.9.4 Other Models References Problems APPENDICES A. Basic Laws of Electrostatic in One Dimension B. Quasi-Fermi Levels and Currents C. General Analysis of the Two-Terminal MOS Structure D. Careful Definitions for the Limits of Moderate Inversion E. General Analysis of the Three-Terminal MOS Structure F. Drain Current Formulation Using Quasi-Fermi Potentials G. Modeling Based on Pinchoff Voltage and Related Topics H. Evaluation of the Intrinsic Transient Source and Drain Currents I. Quantities Used in the Derivation of the Non-Quasi-Static y-Parameter Model K. Analysis of Buried-Channel Devices L. MOSFET Model Benchmark Tests INDEX

Yannis Tsividis is Charles Batchelor Professor of Electrical Engineering at Columbia University. His work with MOS transistors began in 1975 as part of his Ph.D. work at the University of California, Berkeley, in the context of the design and fabrication of the first fully-integrated MOS operational amplifier. He is a Fellow of IEEE. Among his awards are the 1984 IEEE W. R. G. Baker Prize for the best IEEE publication and the 2003 IEEE International Solid-State Circuits Conference Outstanding Paper Award. Colin McAndrew became involved with modeling semiconductor devices in 1987 and has contributed to the development of models for MOS, bipolar, and passive devices. He developed the backward-propagation-of-variation (BPV) technique for statistical modeling and has been a primary advocate of the use of Verilog-A and compilers for device modeling. He has a Ph.D. from the University of Waterloo, works at Freescale Semiconductor, and is a Fellow of the IEEE.

Reviews for Operation and Modeling of the MOS Transistor

The only book that covers device physics and modeling in a clear and cohesive fashion. --Ali M. Niknejad, University of California-Berkeley This is an excellent book and one that is very well respected within the Integrated Circuits community. --Adel Sedra, University of Toronto

See Also