Dr. Pin-Yu Chen is a principal research scientist at IBM Thomas J. Watson Research Center, Yorktown Heights, NY, USA. He is also the chief scientist of RPI-IBM AI Research Collaboration and PI of ongoing MIT-IBM Watson AI Lab projects. Dr. Chen received his Ph.D. in electrical engineering and computer science from the University of Michigan, Ann Arbor, USA, in 2016. Dr. Chen’s recent research focuses on adversarial machine learning of neural networks for robustness and safety. His long-term research vision is to build trustworthy machine learning systems. He received the IJCAI Computers and Thought Award in 2023. He also received the IEEE GLOBECOM 2010 GOLD Best Paper Award and UAI 2022 Best Paper Runner-Up Award. At IBM Research, he received several research accomplishment awards, including IBM Master Inventor, IBM Corporate Technical Award, and IBM Pat Goldberg Memorial Best Paper. He is a co-author of the book “Adversarial Robustness for Machine Learning”. He is currently on the editorial board of Transactions on Machine Learning Research and IEEE Transactions on Signal Processing. He is also an Area Chair of several AI and machine learning conferences, and a Distinguished Lecturer of ACM. Dr. Sijia Liu is currently an Assistant Professor in the CSE department at Michigan State University and an Affiliated Professor at IBM Research. His primary research interests include trustworthy and scalable machine learning (ML), with a recent focus on machine unlearning. He has been recognized with several prestigious awards, including the NSF CAREER award in 2024, the Best Paper Runner-Up Award at the Conference on Uncertainty in Artificial Intelligence (UAI) in 2022, and the Best Student Paper Award at the 42nd IEEE ICASSP in 2017. He has published over 70 papers in top ML/AI conferences based on his record in CSRanking and co-organized several tutorials and workshops on trustworthy and scalable ML.