MAY'S BIG RELEASES DOUBLE REWARDS

Close Notification

Your cart does not contain any items

Computational Methods for Plasticity

Theory and Applications

Eduardo A. de Souza Neto Djordje Peric David R. J. Owen

$271.95

Hardback

Not in-store but you can order this
How long will it take?

QTY:

John Wiley & Sons Inc
17 October 2008
The subject of computational plasticity encapsulates the numerical methods used for the finite element simulation of the behaviour of a wide range of engineering materials considered to be plastic ? i.e. those that undergo a permanent change of shape in response to an applied force. Computational Methods for Plasticity: Theory and Applications describes the theory of the associated numerical methods for the simulation of a wide range of plastic engineering materials; from the simplest infinitesimal plasticity theory to more complex damage mechanics and finite strain crystal plasticity models. It is split into three parts - basic concepts, small strains and large strains. Beginning with elementary theory and progressing to advanced, complex theory and computer implementation, it is suitable for use at both introductory and advanced levels. The book:

Offers a self-contained text that allows the reader to learn computational plasticity theory and its implementation from one volume.

Includes many numerical examples that illustrate the application of the methodologies described.

Provides introductory material on related disciplines and procedures such as tensor analysis, continuum mechanics and finite elements for non-linear solid mechanics.

Is accompanied by purpose-developed finite element software that illustrates many of the techniques discussed in the text, downloadable from the book?s companion website.

This comprehensive text will appeal to postgraduate and graduate students of civil, mechanical, aerospace and materials engineering as well as applied mathematics and courses with computational mechanics components. It will also be of interest to research engineers, scientists and software developers working in the field of computational solid mechanics.
By:   Eduardo A. de Souza Neto, Djordje Peric, David R. J. Owen
Imprint:   John Wiley & Sons Inc
Country of Publication:   United States
Dimensions:   Height: 259mm,  Width: 179mm,  Spine: 46mm
Weight:   1.446kg
ISBN:   9780470694527
ISBN 10:   0470694521
Pages:   814
Publication Date:   17 October 2008
Audience:   Professional and scholarly ,  Undergraduate
Format:   Hardback
Publisher's Status:   Active
Part One Basic concepts 1 Introduction 1.1 Aims and scope 1.2 Layout 1.3 General scheme of notation 2 ELEMENTS OF TENSOR ANALYSIS 2.1 Vectors 2.2 Second-order tensors 2.3 Higher-order tensors 2.4 Isotropic tensors 2.5 Differentiation 2.6 Linearisation of nonlinear problems 3 THERMODYNAMICS 3.1 Kinematics of deformation 3.2 Infinitesimal deformations 3.3 Forces. Stress Measures 3.4 Fundamental laws of thermodynamics 3.5 Constitutive theory 3.6 Weak equilibrium. The principle of virtual work 3.7 The quasi-static initial boundary value problem 4 The finite element method in quasi-static nonlinear solid mechanics 4.1 Displacement-based finite elements 4.2 Path-dependent materials. The incremental finite element procedure 4.3 Large strain formulation 4.4 Unstable equilibrium. The arc-length method 5 Overview of the program structure 5.1 Introduction 5.2 The main program 5.3 Data input and initialisation 5.4 The load incrementation loop. Overview 5.5 Material and element modularity 5.6 Elements. Implementation and management 5.7 Material models: implementation and management Part Two Small strains 6 The mathematical theory of plasticity 6.1 Phenomenological aspects 6.2 One-dimensional constitutive model 6.3 General elastoplastic constitutive model 6.4 Classical yield criteria 6.5 Plastic flow rules 6.6 Hardening laws 7 Finite elements in small-strain plasticity problems 7.1 Preliminary implementation aspects 7.2 General numerical integration algorithm for elastoplastic constitutive equations 7.3 Application: integration algorithm for the isotropically hardening von Mises model 7.4 The consistent tangent modulus 7.5 Numerical examples with the von Mises model 7.6 Further application: the von Mises model with nonlinear mixed hardening 8 Computations with other basic plasticity models 8.1 The Tresca model 8.2 The Mohr-Coulomb model 8.3 The Drucker-Prager model 8.4 Examples 9 Plane stress plasticity 9.1 The basic plane stress plasticity problem 9.2 Plane stress constraint at the Gauss point level 9.3 Plane stress constraint at the structural level 9.4 Plane stress-projected plasticity models 9.5 Numerical examples 9.6 Other stress-constrained states 10 Advanced plasticity models 10.1 A modified Cam-Clay model for soils 10.2 A capped Drucker-Prager model for geomaterials 10.3 Anisotropic plasticity: the Hill, Hoffman and Barlat-Lian models 11 Viscoplasticity 11.1 Viscoplasticity: phenomenological aspects 11.2 One-dimensional viscoplasticity model 11.3 A von Mises-based multidimensional model 11.4 General viscoplastic constitutive model 11.5 General numerical framework 11.6 Application: computational implementation of a von Mises-based model 11.7 Examples 12 Damage mechanics 12.1 Physical aspects of internal damage in solids 12.2 Continuum damage mechanics 12.3 Lemaitre's elastoplastic damage theory 12.4 A simplified version of Lemaitre's model 12.5 Gurson's void growth model 12.6 Further issues in damage modelling Part Three Large strains 13 Finite strain hyperelasticity 13.1 Hyperelasticity: basic concepts 13.2 Some particular models 13.3 Isotropic finite hyperelasticity in plane stress 13.4 Tangent moduli: the elasticity tensors 13.5 Application: Ogden material implementation 13.6 Numerical examples 13.7 Hyperelasticity with damage: the Mullins effect 14 Finite strain elastoplasticity 14.1 Finite strain elastoplasticity: a brief review 14.2 One-dimensional finite plasticity model 14.3 General hyperelastic-based multiplicative plasticity model 14.4 The general elastic predictor/return-mapping algorithm 14.5 The consistent spatial tangent modulus 14.6 Principal stress space-based implementation 14.7 Finite plasticity in plane stress 14.8 Finite viscoplasticity 14.9 Examples 14.10 Rate forms: hypoelastic-based plasticity models 14.11 Finite plasticity with kinematic hardening 15 Finite elements for large-strain incompressibility 15.1 The F-bar methodology 15.2 Enhanced assumed strain methods 15.3 Mixed u/p formulations 16 Anisotropic finite plasticity: Single crystals 16.1 Physical aspects 16.2 Plastic slip and the Schmid resolved shear stress 16.3 Single crystal simulation: a brief review 16.4 A general continuum model of single crystals 16.5 A general integration algorithm 16.6 An algorithm for a planar double-slip model 16.7 The consistent spatial tangent modulus 16.8 Numerical examples 16.9 Viscoplastic single crystals Appendices A Isotropic functions of a symmetric tensor A.1 Isotropic scalar-valued functions A.1.1 Representation A.1.2 The derivative of anisotropic scalar function A.2 Isotropic tensor-valued functions A.2.1 Representation A.2.2 The derivative of anisotropic tensor function A.3 The two-dimensional case A.3.1 Tensor function derivative A.3.2 Plane strain and axisymmetric problems A.4 The three-dimensional case A.4.1 Function computation A.4.2 Computation of the function derivative A.5 A particular class of isotropic tensor functions A.5.1 Two dimensions A.5.2 Three dimensions A.6 Alternative procedures B The tensor exponential B.1 The tensor exponential function B.1.1 Some properties of the tensor exponential function B.1.2 Computation of the tensor exponential function B.2 The tensor exponential derivative B.2.1 Computer implementation B.3 Exponential map integrators B.3.1 The generalised exponential map midpoint rule C Linearisation of the virtual work C.1 Infinitesimal deformations C.2 Finite strains and deformations C.2.1 Material description C.2.2 Spatial description D Array notation for computations with tensors D.1 Second-order tensors D.2 Fourth-order tensors D.2.1 Operations with non-symmetric tensors References Index

Eduardo de Souza Neto is a senior lecturer at the School of Engineering, University of Wales, Swansea, where he teaches a postgraduate course on the finite element method, and undergraduate courses on structural mechanics and soil mechanics. He also currently teaches external courses on computational plasticity; and his research interests include, amongst others, damage mechanics, computational plasticity, contact with friction and finite element technology. He is an international advisory board member for the Latin American Journal of Solids and Structures, and has authored 30 papers in refereed research journals as well as many conference papers, and 4 book contributions. David Owen is Professor in Civil Engineering at the University of Wales, Swansea, and chairman of Rockfield Software Ltd. He is an international authority on finite element and discrete element techniques, and is the author of seven textbooks and over three hundred and fifty scientific publications. In addition to being the editor of over thirty monographs and conference proceedings, Professor Owen is also the editor of the International Journal for Engineering Computations and is a member of several Editorial Boards. His involvement in academic research has lead to the supervision of over sixty Ph.D. students. Professor Owen is a fellow of the RAE and ICE. Djordje Peric is Professor in the Department of Civil Engineering, University of Wales, Swansea. He has an established reputation in the field of non-linear computational mechanics and is the author of over 150 research publications. He has also edited two special journal issues, and serves as an editorial board member of five international academic journals. Over the last decade Professor Peric has attracted approximately GBP2.5 million of research grants and funding from the UK Engineering and Physical Sciences Research Council, and various industries including Unilever, British Steel, Rolls Royce, MIC and Rockfield Software.

See Also