Close Notification

Your cart does not contain any items

Topology: A Very Short Introduction

Richard Earl



In stock
Ready to ship


Oxford University Press
12 December 2019
Mathematics & Sciences; Mathematics; Topology; Algebraic topology; Analytic topology; Applied mathematics
How is a subway map different from other maps? What makes a knot knotted? What makes the Moebius strip one-sided? These are questions of topology, the mathematical study of properties preserved by twisting or stretching objects. In the 20th century topology became as broad and fundamental as algebra and geometry, with important implications for science, especially physics. In this Very Short Introduction Richard Earl gives a sense of the more visual elements of topology (looking at surfaces) as well as covering the formal definition of continuity. Considering some of the eye-opening examples that led mathematicians to recognize a need for studying topology, he pays homage to the historical people, problems, and surprises that have propelled the growth of this field. ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.
By:   Richard Earl
Imprint:   Oxford University Press
Country of Publication:   United Kingdom
Dimensions:   Height: 175mm,  Width: 112mm,  Spine: 10mm
Weight:   130g
ISBN:   9780198832683
ISBN 10:   0198832680
Series:   Very Short Introductions
Pages:   152
Publication Date:   12 December 2019
Audience:   General/trade ,  ELT Advanced
Format:   Paperback
Publisher's Status:   Active
1: What is Topology? 2: Making Surfaces 3: Thinking Continuously 4: The Plane and Other Spaces 5: Flavours of Topology 6: More on Surfaces 7: Knot to Be Historical Timeline Further Reading Index

Dr Richard Earl is Director of Undergraduate Studies in the Mathematical Institute, Oxford University, and Senior Tutor in Mathematics at Worcester College, Oxford. He has taught topology at undergraduate and graduate level, as well as presenting the topic to secondary school students. He is the author of Towards Higher Mathematics: A Companion (CUP, 2017).

See Also