FREIGHT DELAYS IN AND OUT: MORE INFO

Close Notification

Your cart does not contain any items

The Physics of Solar Energy Conversion

Juan Bisquert (Universitat Jaume I, Castello, Spain)

$483.00

Hardback

We can order this in for you
How long will it take?

QTY:

CRC Press
21 July 2020
Physics; Physical chemistry; Nanotechnology; Materials science; Alternative & renewable energy sources & technology
Research on advanced energy conversion devices such as solar cells has intensified in the last two decades. A broad landscape of candidate materials and devices were discovered and systematically studied for effective solar energy conversion and utilization. New concepts have emerged forming a rather powerful picture embracing the mechanisms and limitation to efficiencies of different types of devices. The Physics of Solar Energy Conversion introduces the main physico-chemical principles that govern the operation of energy devices for energy conversion and storage, with a detailed view of the principles of solar energy conversion using advanced materials.

Key Features include:

Highlights recent rapid advances with the discovery of perovskite solar cells and their development. Analyzes the properties of organic solar cells, lithium ion batteries, light emitting diodes and the semiconductor materials for hydrogen production by water splitting. Embraces concepts from nanostructured and highly disordered materials to lead halide perovskite solar cells Takes a broad perspective and comprehensively addresses the fundamentals so that the reader can apply these and assess future developments and technologies in the field. Introduces basic techniques and methods for understanding the materials and interfaces that compose operative energy devices such as solar cells and solar fuel converters.
By:   Juan Bisquert (Universitat Jaume I Castello Spain)
Imprint:   CRC Press
Country of Publication:   United Kingdom
Dimensions:   Height: 279mm,  Width: 216mm, 
Weight:   1.066kg
ISBN:   9781138584648
ISBN 10:   1138584649
Pages:   470
Publication Date:   21 July 2020
Audience:   College/higher education ,  Primary
Format:   Hardback
Publisher's Status:   Active
Contents Preface........................................................................................................................................................................xv Acknowledgments....................................................................................................................................................xvii Author.......................................................................................................................................................................xix Chapter 1 Introduction to Energy Devices...............................................................................................................1 References...............................................................................................................................................9 PART I Equilibrium Concepts and Kinetics Chapter 2 Electrostatic and Thermodynamic Potentials of Electrons in Materials...............................................13 2.1 Electrostatic Potential..................................................................................................................13 2.2 Energies of Free Electrons and Holes.......................................................................................... 14 2.3 Potential Energy of the Electrons in the Semiconductor............................................................. 17 2.4 The Vacuum Level....................................................................................................................... 17 2.5 The Fermi Level and the Work Function....................................................................................20 2.6 The Chemical Potential of Electrons........................................................................................... 21 2.7 Potential Step of a Dipole Layer or a Double Layer....................................................................23 2.8 Origin of Surface Dipoles............................................................................................................24 2.9 The Volta Potential......................................................................................................................25 2.10 Equalization of Fermi Levels of Two Electronic Conductors in Contact....................................27 2.11 Equilibration of Metal Junctions and the Contact Potential Difference......................................28 2.12 Equilibrium across the Semiconductor Junction.........................................................................29 General References............................................................................................................................... 31 References............................................................................................................................................. 31 Chapter 3 Voltage, Capacitors, and Batteries.........................................................................................................33 3.1 The Voltage in the Device...........................................................................................................33 3.2 Anode and Cathode.....................................................................................................................34 3.3 Applied Voltage and Potential Difference...................................................................................35 3.4 The Capacitor..............................................................................................................................37 3.5 Measurement of the Capacitance.................................................................................................38 3.6 Energy Storage in the Capacitor..................................................................................................40 3.7 Electrochemical Systems: Structure of the Metal/Solution Interface..........................................40 3.8 Electrode Potential and Reference Electrodes.............................................................................42 3.9 Redox Potential in Electrochemical Cells...................................................................................44 3.10 Electrochemical and Physical Scales of Electron Energy in Material Systems..........................45 3.11 Changes of Electrolyte Levels with pH.......................................................................................46 3.12 Principles of Electrochemical Batteries.......................................................................................47 3.13 Capacity and Energy Content......................................................................................................50 3.14 Practical Electrochemical Batteries............................................................................................. 51 3.14.1 Zinc-Silver Battery.......................................................................................................... 51 3.14.2 Sodium-Sulfur Battery....................................................................................................52 3.15 Li-Ion Battery.............................................................................................................................. 53 General References...............................................................................................................................57 References.............................................................................................................................................57 Chapter 4 Work Functions and Injection Barriers.................................................................................................59 4.1 Injection to Vacuum in Thermionic Emission.............................................................................59 4.2 Richardson-Dushman Equation..................................................................................................60 4.3 Kelvin Probe Method.................................................................................................................. 61 4.4 Photoelectron Emission Spectroscopy.........................................................................................63 4.5 Injection Barriers.........................................................................................................................66 4.6 Pinning of the Fermi Level and Charge-Neutrality Level...........................................................69 General References...............................................................................................................................73 References.............................................................................................................................................73 Chapter 5 Thermal Distribution of Electrons, Holes, and Ions in Solids............................................................... 75 5.1 Equilibration of the Electrochemical Potential of Electrons....................................................... 75 5.2 Configurational Entropy of Weakly Interacting Particles...........................................................76 5.3 Equilibrium Occupancy of Conduction Band and Valence Band States.....................................76 5.4 Equilibrium Fermi Level and the Carrier Number in Semiconductors.......................................79 5.5 Transparent Conducting Oxides.................................................................................................. 81 5.6 Hot Electrons...............................................................................................................................82 5.7 Screening.....................................................................................................................................84 5.8 The Rectifier at Forward and Reverse Voltage............................................................................85 5.9 Semiconductor Devices as Thermal Machines that Realize Useful Work..................................88 5.10 Cell Potential in the Lithium Ion Battery....................................................................................90 5.11 Insertion of Ions: The Lattice Gas Model....................................................................................94 General References...............................................................................................................................98 References.............................................................................................................................................98 Chapter 6 Interfacial Kinetics and Hopping Transitions...................................................................................... 101 6.1 Principle of Detailed Balance.................................................................................................... 101 6.2 Form of the Transition Rates.....................................................................................................104 6.3 Kinetics of Localized States: Shockley-Read-Hall Recombination Model...............................106 6.4 Reorganization Effects in Charge Transfer: The Marcus Model............................................... 107 6.5 Polaron Hopping........................................................................................................................ 112 6.6 Rate of Electrode Reaction: Butler-Volmer Equation................................................................ 115 6.6.1 Availability of Electronic Species................................................................................. 116 6.6.2 Availability of Redox Species........................................................................................ 116 6.6.3 The Kinetic Constant for Charge Transfer.................................................................... 117 6.7 Electron Transfer at Metal-Semiconductor Contact..................................................................120 6.8 Electron Transfer at the Semiconductor/Electrolyte Interface.................................................. 121 General References.............................................................................................................................126 References...........................................................................................................................................127 Chapter 7 The Chemical Capacitance.................................................................................................................. 131 7.1 Carrier Accumulation and Energy Storage in the Chemical Capacitance................................. 131 7.2 Localized Electronic States in Disordered Materials and Surface States................................. 133 7.3 Chemical Capacitance of a Single State.................................................................................... 135 7.4 Chemical Capacitance of a Broad DOS.................................................................................... 136 7.5 Filling a DOS with Carriers: The Voltage and the Conductivity.............................................. 138 7.6 Chemical Capacitance of Li Intercalation Materials................................................................. 139 7.7 Chemical Capacitance of Graphene.......................................................................................... 140 General References............................................................................................................................. 142 References........................................................................................................................................... 143 Chapter 8 The Density of States in Disordered Inorganic and Organic Conductors........................................... 145 8.1 Capacitive and Reactive Current in Cyclic Voltammetry.......................................................... 145 8.2 Kinetic Effects in CV Response................................................................................................ 149 8.3 The Exponential DOS in Amorphous Semiconductors.............................................................150 8.4 The Exponential DOS in Nanocrystalline Metal Oxides.......................................................... 152 8.5 Basic Properties of Organic Layers........................................................................................... 156 8.6 The Gaussian DOS.................................................................................................................... 160 General References............................................................................................................................. 162 References........................................................................................................................................... 163 Chapter 9 Planar and Nanostructured Semiconductor Junctions......................................................................... 167 9.1 Structure of the Schottky Barrier at a Metal/Semiconductor Contacts..................................... 167 9.2 Changes of the Schottky Barrier by the Applied Voltage.......................................................... 168 9.3 Properties of the Planar Depletion Layer.................................................................................. 170 9.4 Mott-Schottky Plots.................................................................................................................. 171 9.5 Capacitance Response of Defect Levels and Surface States..................................................... 172 9.6 Semiconductor Electrodes and the Flatband Potential.............................................................. 173 9.7 Changes of Redox Level and Band Unpinning.......................................................................... 176 9.8 Inversion and Accumulation Layer............................................................................................ 180 9.9 Heterojunctions.......................................................................................................................... 181 9.10 Effect of Voltage on Highly Doped Nanocrystalline Semiconductors...................................... 183 9.11 Homogeneous Carrier Accumulation in Low-Doped Nanocrystalline Semiconductors........... 188 General References............................................................................................................................. 192 References........................................................................................................................................... 192 PART II Foundations of Carrier Transport Chapter 10 Carrier Injection and Drift Transport.................................................................................................. 197 10.1 Transport by Drift in the Electrical Field.................................................................................. 197 10.2 Injection at Contacts.................................................................................................................. 198 10.3 The Metal-Insulator-Metal Model.............................................................................................202 10.4 The Time-of-Flight Method......................................................................................................205 General References.............................................................................................................................206 References...........................................................................................................................................206 Chapter 11 Diffusion Transport.............................................................................................................................209 11.1 Diffusion in the Random Walk Model......................................................................................209 11.2 Macroscopic Diffusion Equation............................................................................................... 211 11.3 The Diffusion Length................................................................................................................ 212 11.4 Chemical Diffusion Coefficient and the Thermodynamic Factor............................................. 213 General References............................................................................................................................. 215 References........................................................................................................................................... 215 Chapter 12 Drift-Diffusion Transport.................................................................................................................... 217 12.1 General Transport Equation in Terms of Electrochemical Potential......................................... 217 12.2 The Transport Resistance.......................................................................................................... 217 12.3 The Einstein Relation................................................................................................................ 219 12.4 Drift-Diffusion Equations..........................................................................................................220 12.5 Ambipolar Diffusion Transport................................................................................................221 12.6 Relaxation of Injected Charge..................................................................................................222 12.7 Transient Current in Insulator Layers.......................................................................................223 12.8 Modeling Transport Problems..................................................................................................224 General References.............................................................................................................................227 References...........................................................................................................................................227 Chapter 13 Transport in Disordered Media...........................................................................................................229 13.1 Multiple Trapping and Hopping Transport...............................................................................229 13.2 Transport by Hopping in a Single Level...................................................................................231 13.3 Trapping Factors in the Kinetic Constants...............................................................................233 13.4 Two-Level (Single-Trap) Model................................................................................................235 13.5 Multiple Trapping in Exponential DOS....................................................................................237 13.6 Activated Transport in a Gaussian DOS...................................................................................237 13.7 Multiple Trapping in the Time Domain....................................................................................239 13.8 Hopping Conductivity...............................................................................................................241 13.9 The Transport Energy...............................................................................................................242 13.10 Variable Range Hopping...........................................................................................................243 General References.............................................................................................................................245 References...........................................................................................................................................245 Chapter 14 Thin Film Transistors..........................................................................................................................249 14.1 Organic Thin Film Transistors.................................................................................................249 14.2 Carrier Density in the Channel.................................................................................................250 14.3 Determination of the DOS in Thin Film Transistor Configuration..........................................252 14.4 Current-Voltage Characteristics................................................................................................255 14.5 The Mobility in Disordered Semiconductors............................................................................257 14.6 Electrochemical Transistor.......................................................................................................258 General References.............................................................................................................................259 References...........................................................................................................................................259 Chapter 15 Space-Charge-Limited Transport........................................................................................................263 15.1 Space-Charge-Limited Current................................................................................................263 15.2 Injected Carrier Capacitance in SCLC.....................................................................................265 15.3 Space Charge in Double Injection............................................................................................267 General References.............................................................................................................................269 References...........................................................................................................................................269 Chapter 16 Impedance and Capacitance Spectroscopies....................................................................................... 271 16.1 Frequency Domain Measurements...........................................................................................271 16.2 Dielectric Relaxation Functions................................................................................................272 16.3 Resistance and Capacitance in Equivalent Circuit Models.......................................................274 16.4 Relaxation in Time Domain......................................................................................................279 16.5 Universal Properties of the Frequency-Dependent Conductivity..............................................281 16.6 Electrode Polarization...............................................................................................................283 General References.............................................................................................................................284 References...........................................................................................................................................284 PART III Radiation, Light, and Semiconductors Chapter 17 Blackbody Radiation and Light...........................................................................................................289 17.1 Photons and Light......................................................................................................................289 17.2 Spread and Direction of Radiation............................................................................................289 17.3 Color and Photometry................................................................................................................ 291 17.4 Blackbody Radiation.................................................................................................................293 17.5 The Planck Spectrum................................................................................................................294 17.6 The Energy Density of The Distribution of Photons in Blackbody Radiation..........................295 17.7 The Photon and Energy Fluxes in Blackbody Radiation...........................................................297 17.8 The Solar Spectrum...................................................................................................................299 General References.............................................................................................................................302 References...........................................................................................................................................302 Chapter 18 Light Absorption, Carrier Recombination, and Luminescence...........................................................305 18.1 Absorption of Incident Radiation..............................................................................................305 18.2 Luminescence and Energy Transfer..........................................................................................307 18.3 The Quantum Efficiency........................................................................................................... 310 18.4 The Recombination of Carriers in Semiconductors.................................................................. 311 18.5 Recombination Lifetime............................................................................................................ 314 General References............................................................................................................................. 316 References........................................................................................................................................... 316 Chapter 19 Optical Transitions in Organic and Inorganic Semiconductors.......................................................... 319 19.1 Light Absorption in Inorganic Solids........................................................................................ 319 19.2 Free Carrier Phenomena............................................................................................................323 19.3 Excitons.....................................................................................................................................325 19.4 Quantum Dots...........................................................................................................................328 19.5 Organic Molecules and Materials..............................................................................................330 19.6 The CT Band in Organic Blends and Heterojunctions.............................................................. 333 General References............................................................................................................................. 336 References........................................................................................................................................... 336 PART IV Photovoltaic Principles and Solar Energy Conversion Chapter 20 Fundamental Model of a Solar Cell....................................................................................................343 20.1 Majority Carrier Injection Mechanisms....................................................................................343 20.2 Majority Carrier Devices...........................................................................................................344 20.3 Minority Carrier Devices..........................................................................................................345 20.4 Fundamental Properties of a Solar Cell.....................................................................................346 20.5 Physical Properties of Selective Contacts in Solar Cells...........................................................348 General References............................................................................................................................. 351 References........................................................................................................................................... 351 Chapter 21 Recombination Current in the Semiconductor Diode......................................................................... 353 21.1 Dark Equilibrium of Absorption and Emission of Radiation.................................................... 353 21.2 Recombination Current............................................................................................................. 355 21.3 Dark Characteristics of Diode Equation.................................................................................... 356 21.4 Light-Emitting Diodes............................................................................................................... 357 21.5 Dye Sensitization and Molecular Diodes...................................................................................360 General References.............................................................................................................................363 References...........................................................................................................................................363 Chapter 22 Radiative Equilibrium in a Semiconductor.........................................................................................365 22.1 Utilization of Solar Photons......................................................................................................365 22.2 Fundamental Radiative Carrier Lifetime..................................................................................368 22.3 Radiative Emission of a Semiconductor Layer..........................................................................369 22.4 Photons at Nonzero Chemical Potential.................................................................................... 370 General References............................................................................................................................. 373 References........................................................................................................................................... 373 Chapter 23 Reciprocity Relations in Solar Cells and Fundamental Limits to the Photovoltage ........................... 375 23.1 The Reciprocity between LED and Photovoltaic Performance Parameters.............................. 375 23.2 Factors Determining the Photovoltage...................................................................................... 378 23.3 External Radiative Efficiency....................................................................................................382 23.4 Photon Recycling.......................................................................................................................383 23.5 Radiative Cooling in EL and Photoluminescence.....................................................................386 23.6 Reciprocity of Absorption and Emission in a CT Band............................................................387 General References............................................................................................................................. 391 References...........................................................................................................................................392 Chapter 24 Charge Separation and Material Limits to the Photovoltage...............................................................395 24.1 Light Absorption........................................................................................................................395 24.2 Charge Separation.....................................................................................................................395 24.3 Materials Limits to the Photovoltage.........................................................................................398 General References.............................................................................................................................403 References...........................................................................................................................................404 Chapter 25 Operation of Solar Cells and Fundamental Limits to Their Performance..........................................407 25.1 Current-Voltage Characteristics.................................................................................................407 25.2 Power Conversion Efficiency.....................................................................................................408 25.3 Analysis of FF........................................................................................................................... 410 25.4 Shockley-Queisser Efficiency Limits........................................................................................ 412 25.5 Practical Solar Cells Efficiency Limits...................................................................................... 413 General References............................................................................................................................. 419 References........................................................................................................................................... 419 Chapter 26 Charge Collection in Solar Cells......................................................................................................... 421 26.1 Introduction to Charge Collection Properties............................................................................ 421 26.2 Charge Collection Distance.......................................................................................................422 26.3 General Modeling Equations.....................................................................................................424 26.4 The Boundary Conditions.........................................................................................................425 26.4.1 Charge Extraction Boundary Condition........................................................................426 26.4.2 Blocking Boundary Condition.......................................................................................427 26.4.3 Generalized Boundary Conditions................................................................................428 26.5 A Photovoltaic Model with Diffusion and Recombination........................................................429 26.6 The Gartner Model.................................................................................................................... 433 26.7 Diffusion-Recombination and Collection in the Space-Charge Region.................................... 435 26.8 Solar Cell Simulation................................................................................................................. 436 26.9 Classification of Solar Cells....................................................................................................... 437 26.10 Measuring and Reporting Solar Cell Efficiencies..................................................................... 439 General References.............................................................................................................................442 References...........................................................................................................................................442 Chapter 27 Spectral Harvesting and Photoelectrochemical Conversion................................................................445 27.1 Conversion of Photon Frequencies for Solar Energy Harvesting..............................................445 27.2 Tandem Solar Cells....................................................................................................................448 27.3 Solar Fuel Generation................................................................................................................450 General References.............................................................................................................................456 References...........................................................................................................................................456 Appendix................................................................................................................................................................. 459 Index........................................................................................................................................................................463

Juan Bisquert is a professor of applied physics at the Universitat Jaume I de Castello and the funding director of the Institute of Advanced Materials at UJI. He earned an MSc in physics in 1985 and a PhD from the Universitat de Valencia in 1992. The research work is in perovskite solar cells, semiconductor optoelectronics, mixed ionicelectronic conductors, and solar fuel converters based on visible light and semiconductors for water splitting and CO2 reduction. His most well-known work is about the mechanisms governing the operation of nanostructured and solution-processed thin film solar cells. He has developed insights in the electronic processes in hybrid organic-inorganic solar cells, combining the novel theory of semiconductor nanostructures, photoelectrochemistry, and systematic experimental demonstration. His contributions produced a broad range of concepts and characterization methods to analyze the operation of photovoltaic and optoelectronic devices. He is a senior editor of the Journal of Physical Chemistry Letters. He has been distinguished several times in the list of ISI Highly Cited Researchers. Bisquert created nanoGe Conferences and is the president of the Fundacio Scito. He wrote a novel of speculative fiction, The Canamel Conjecture.

See Also