Close Notification

Your cart does not contain any items

Systems Biology: Mathematical Modeling and Model Analysis

Andreas Kremling (Technical University Munich, Germany)



We can order this in for you
How long will it take?


CRC Press Inc
12 November 2013
Applied mathematics; Biology, life sciences
Drawing on the latest research in the field, Systems Biology: Mathematical Modeling and Model Analysis presents many methods for modeling and analyzing biological systems, in particular cellular systems. It shows how to use predictive mathematical models to acquire and analyze knowledge about cellular systems. It also explores how the models are systematically applied in biotechnology.

The first part of the book introduces biological basics, such as metabolism, signaling, gene expression, and control as well as mathematical modeling fundamentals, including deterministic models and thermodynamics. The text also discusses linear regression methods, explains the differences between linear and nonlinear regression, and illustrates how to determine input variables to improve estimation accuracy during experimental design.

The second part covers intracellular processes, including enzymatic reactions, polymerization processes, and signal transduction. The author highlights the process-function-behavior sequence in cells and shows how modeling and analysis of signal transduction units play a mediating role between process and function.

The third part presents theoretical methods that address the dynamics of subsystems and the behavior near a steady state. It covers techniques for determining different time scales, sensitivity analysis, structural kinetic modeling, and theoretical control engineering aspects, including a method for robust control. It also explores frequent patterns (motifs) in biochemical networks, such as the feed-forward loop in the transcriptional network of E. coli.

Moving on to models that describe a large number of individual reactions, the last part looks at how these cellular models are used in biotechnology. The book also explains how graphs can illustrate the link between two components in large networks with several interactions.
By:   Andreas Kremling (Technical University Munich Germany)
Imprint:   CRC Press Inc
Country of Publication:   United States
Dimensions:   Height: 234mm,  Width: 156mm,  Spine: 23mm
Weight:   658g
ISBN:   9781466567894
ISBN 10:   1466567899
Series:   Chapman & Hall/CRC Mathematical Biology Series
Pages:   379
Publication Date:   12 November 2013
Audience:   College/higher education ,  College/higher education ,  Professional and scholarly ,  Primary ,  Primary
Format:   Hardback
Publisher's Status:   Active
Fundamentals Introduction Biological Basics The Cell-an Introduction Cell Division and Growth Basics of Metabolism Replication, Transcription, and Translation Fundamentals of Mathematical Modeling Definition-Overview of Different Model Classes Basics of Reaction Engineering Stochastic Description Deterministic Modeling Qualitative Modeling and Analysis Modeling on the Level of Single Cells-the Population Balance Data-Driven Modeling Thermodynamics Model Calibration and Experimental Design Regression Model and Parameter Accuracy Dynamic Systems Identifiability of Dynamic Systems Modeling of Cellular Processes Enzymatic Conversion Fundamentals of Enzyme Kinetics Models for Allosteric Enzymes Influence of Effectors The Hill Equation Multi Substrate Kinetics Transport Processes The Wegscheider Condition Alternative Kinetic Approaches Thermodynamic of a Single Reaction Polymerization Processes Macroscopic View Microscopic View Influence of Regulatory Proteins (Transcription Factors, Repressors) Interaction of Several Regulators Replication Signal Transduction and Genetically Regulated Systems Simple Schemes of Signal Transduction Oscillating Systems Genetically Regulated Networks Spatial Gradients by Signal Transduction Analysis of Signaling Pathways by Heinrich Analysis of Modules and Motifs General Methods of Model Analysis Analysis of Time Hierarchies Sensitivity Analysis Robustness in Stoichiometric Networks Metabolic Control Analysis Biochemical Systems Theory Structured Kinetic Modeling Model Reduction for Signal Proteins Aspects of Control Theory Observability Monotone Systems Integral Feedback Robust Control Motifs in Cellular Networks Feed-Forward Loop (FFL) FFLs in Metabolic Networks FFL in Signaling Systems: Two-component Signal Transduction Further Signaling Motifs Analysis of Cellular Networks Metabolic Engineering Reconstruction of Metabolic Network Tasks and Problem Definition Subspaces of Matrix N Methods to Determine Flux Distributions Strain Optimization Topological Characteristics Network Measures Topological Overlap Formation of Scale Free Networks Appendix Index Exercises and Bibliography appear at the end of each chapter.

Reviews for Systems Biology: Mathematical Modeling and Model Analysis

Systems Biology: Mathematical Modeling and Model Analysis is a rich resource of mathematical methods and approaches that can be utilized to analyze and understand biological systems. It will be particularly attractive to engineers and mathematicians, who want to learn the basics of modern biology in a condensed fashion and then apply the tools of their trades to relevant biological questions.Systems Biology presents key phenomena of molecular biology in a succinct, introductory manner while expecting the reader to have some prior knowledge of basic math, including probabilities, integrals, matrices, differential equations, and Laplace transforms. Building upon this knowledge, Systems Biology devotes a good portion of the material to state-of-the-art model diagnostics and engineering techniques, such as linear systems analysis and control theory, which so far are rarely found in systems biology texts and are therefore a welcome addition to the repertoire of textbook literature. For instance, important topics like identifiability, observability, and robust control are seldom encountered in introductory texts on systems biology but discussed here in some detail. Laudably, all topics are illustrated with step-by-step examples, and many of them are reinforced with exercises. -Eberhard Voit, Georgia Institute of Technology Computational modeling of biological circuits, networks and pathways is one of the most exciting areas in biology today, and Andreas Kremling's Systems Biology: Mathematical Modeling and Model Analysis is a meticulous and far-reaching treatment of this critically important subject. This book clearly aims to be comprehensive without sacrificing depth, and the result is an exhaustive survey of modeling approaches. Each chapter is thoughtfully crafted to draw in novices to the field while still engaging to experts. Additionally, a number of well-designed exercises complement each chapter. I found the sections on model analysis and control theory particularly useful and relevant. -Markus Covert, Stanford University [Systems Biology: Mathematical Modeling & Model Analysis] is a well-structured (the collection and order of chapters is excellent), provides comprehensive material of fundamentals, theory, and applications of methods used in systems biology. It is a user-friendly guide that I believe can serve as a tutorial for students specializing in systems biology as well as a reference work for established researchers in the field. I highly recommend this book to the reader. -Christian T. K.-H. Stadtlander, Journal of Biological Dynamics, November 2017

See Also