SALE ON NOW! PROMOTIONS

Close Notification

Your cart does not contain any items

Spatial Data and Intelligence

5th China Conference, SpatialDI 2024, Nanjing, China, April 25–27, 2024, Proceedings

Xiaofeng Meng Xueying Zhang Danhuai Guo Di Hu

$162.95   $130.01

Paperback

Not in-store but you can order this
How long will it take?

QTY:

English
Springer Nature
01 May 2024
This book constitutes the refereed post proceedings of the 5th China Conference on Spatial Data and Intelligence, SpatialDI 2024, held in Nanjing, China, during April 25–27, 2024.

The 25 full papers included in this book were carefully reviewed and selected from 95 submissions. They were organized in topical sections as follows: Spatiotemporal Data Analysis, Spatiotemporal Data Mining, Spatiotemporal Data Prediction, Remote Sensing Data Classification and Applications of Spatiotemporal Data Mining.
Edited by:   , , , ,
Imprint:   Springer Nature
Country of Publication:   Singapore
Edition:   2024 ed.
Volume:   14619
Dimensions:   Height: 235mm,  Width: 155mm, 
ISBN:   9789819729654
ISBN 10:   9819729653
Series:   Lecture Notes in Computer Science
Pages:   358
Publication Date:  
Audience:   Professional and scholarly ,  Undergraduate
Format:   Paperback
Publisher's Status:   Active
.- Spatiotemporal Data Analysis.   .- Multi-view Contrastive Clustering with Clustering Guidance and Adaptive Auto-en-coders.   .- Cloud-Edge Collaborative Continual Adaptation for ITS Object Detection.   .- Understanding Spatial Dependency among Spatial Interactions.   .- An Improved DBSCAN Clustering Method for AIS Trajectories Incorporating DP Compression and Discrete Fréchet Distance.   .- Structure and Semantic Contrastive Learning for Nodes Clustering in Heterogeneous Information Networks.   .- Accuracy Evaluation Method for Vector Data Based on Hexagonal Discrete Global Grid.   .- Applying Segment Anything Model to Ground-Based Video Surveillance for Identify-ing Aquatic Plant.   .- Spatiotemporal Data Mining.   .- Mining Regional High Utility Co-location Pattern.   .- Local Co-location Pattern Mining Based on Regional Embedding.   .- RCPM_RLM: A Regional Co-location Pattern Mining Method Based on Representa-tion Learning Model.   .- Construction of a Large-Scale Maritime Elements Semantic Schema Based on Hetero-geneous Graph Models.   .- OCGATL: One-Class Graph Attention Networks with Transformation Learning for Anomaly Detection For Argo Data.   .- RGCNdist2vec: Using Graph Convolutional Networks and Distance2Vector to Esti-mate Shortest Path Distance along Road Networks.   .- Self-supervised Graph Neural Network based Community Search over Heterogeneous Information Networks.   .- Measurement and Research on the Conflict between Residential Space and Tourism Space in Pianyan Ancient Township.   .- Spatiotemporal Data Prediction.   .- Spatio-Temporal Sequence Prediction Of Diversion Tunnel Based On Machine Learn-ing Multivariate Data Fusion.   .- DyAdapTransformer: Dynamic Adaptive Spatial-Temporal Graph Transformer for Traffic Prediction.   .- Predicting Future Spatio-Temporal States Using a Robust Causal Graph Attention Model.   .- Remote Sensing Data Classification.   .- MADB-RemdNet for Few-Shot Learning in Remote Sensing Classification.   .- Convolutional Neural Network Based on Multiple Attention Mechanisms for Hyper-spectral and LiDAR Classification.   .- Few-shot Learning Remote Scene Classification Based On DC-2DEC.   .- Applications of Spatiotemporal Data Mining.   .- Neural HD Map Generation from Multiple Vectorized Tiles Locally Produced by Au-tonomous Vehicles.   .- Trajectory Data Semi-fragile Watermarking Algorithm Considering Spatiotemporal Features.   .- HPO-LGBM-DRI: Dynamic Recognition Interval Estimation for Imbalanced Fraud Call via HPO-LGBM.   .- A Review on Urban Modelling for Future Smart Cities.

See Also