}

PayPal accepted MORE INFO

Close Notification

Your cart does not contain any items

Random Processes for Engineers: A Primer

Arthur David Snider

$192.00

Hardback

We can order this in for you
How long will it take?

QTY:

Productivity Press
18 January 2017
Stochastics; Maths for engineers
This book offers an intuitive approach to random processes and educates the reader on how to interpret and predict their behavior. Premised on the idea that new techniques are best introduced by specific, low-dimensional examples, the mathematical exposition is easier to comprehend and more enjoyable, and it motivates the subsequent generalizations. It distinguishes between the science of extracting statistical information from raw data--e.g., a time series about which nothing is known a priori--and that of analyzing specific statistical models, such as Bernoulli trials, Poisson queues, ARMA, and Markov processes. The former motivates the concepts of statistical spectral analysis (such as the Wiener-Khintchine theory), and the latter applies and interprets them in specific physical contexts. The formidable Kalman filter is introduced in a simple scalar context, where its basic strategy is transparent, and gradually extended to the full-blown iterative matrix form.
By:   Arthur David Snider
Imprint:   Productivity Press
Country of Publication:   United States
Dimensions:   Height: 235mm,  Width: 156mm, 
Weight:   522g
ISBN:   9781498799034
ISBN 10:   1498799035
Pages:   195
Publication Date:   18 January 2017
Audience:   College/higher education ,  Professional and scholarly ,  Primary ,  Undergraduate
Format:   Hardback
Publisher's Status:   Active

Dr. Arthur David Snider has over fifty years of experience in modeling physical systems in the areas of heat transfer, electromagnetics, microwave circuits, and orbital mechanics, as well as the mathematical areas of numerical analysis, signal processing, differential equations, and optimization. He holds degrees in both mathematics (BS, MIT, PhD, NYU) and physics (MA, Boston U), and he is a registered professional engineer. He served for forty-five years on the faculties of mathematics, physics, and electrical engineering at the University of South Florida after working for five years as a systems analyst at MIT's Draper Instrumentation Lab. He consults in many industries in Florida and has published five other textbooks in applied mathematics.

Reviews for Random Processes for Engineers: A Primer

This is great and timely book! It takes difficult concepts and distills them to the reader in a way that is simple and easy to understand. It connects students with hard to understand theories and concepts though the use of good examples and graphical illustrations. - George Edwards, University of Denver, USA This book offers an intuitive approach to random processes and discusses how to interpret and predict their behavior. Based on the idea that new techniques are best introduced by specific, low-dimensional examples, the mathematical exposition is made easier to comprehend and serves to motivate the subsequent generalizations. It distinguishes between the science of extracting statistical information from raw data such as a time series about which nothing is known a priori and that of analyzing specific statistical models, such as Bernoulli trials, Poisson queues, ARMA, and Markov processes. The former motivates the concepts of statistical spectral analysis (such as the Wiener-Khintchine theory), and the latter applies and interprets them in specific physical contexts. The Kalman filter is introduced in a simple scalar context, where its basic strategy is transparent and gradually extended to the full-blown iterative matrix form. -IEEE Control Systems Magazine, December 2017 Issue


See Also