LOW FLAT RATE $9.90 AUST-WIDE DELIVERY

Close Notification

Your cart does not contain any items

Quantitative Portfolio Optimization

Advanced Techniques and Applications

Miquel Noguer Alonso Julian Antolin Camarena Alberto Bueno Guerrero

$157.95

Hardback

Not in-store but you can order this
How long will it take?

QTY:

English
John Wiley & Sons Inc
21 February 2025
Series: Wiley Finance
Expert guidance on implementing quantitative portfolio optimization techniques

In Quantitative Portfolio Optimization: Theory and Practice, renowned financial practitioner Miquel Noguer, alongside physicists Alberto Bueno Guerrero and Julian Antolin Camarena, who possess excellent knowledge in finance, delve into advanced mathematical techniques for portfolio optimization. The book covers a range of topics including mean-variance optimization, the Black-Litterman Model, risk parity and hierarchical risk parity, factor investing, methods based on moments, and robust optimization as well as machine learning and reinforcement technique. These techniques enable readers to develop a systematic, objective, and repeatable approach to investment decision-making, particularly in complex financial markets.

Readers will gain insights into the associated mathematical models, statistical analyses, and computational algorithms for each method, allowing them to put these techniques into practice and identify the best possible mix of assets to maximize returns while minimizing risk. Topics explored in this book include:

Specific drivers of return across asset classes Personal risk tolerance and it#s impact on ideal asses allocation The importance of weekly and monthly variance in the returns of

specific securities

Serving as a blueprint for solving

portfolio optimization problems, Quantitative Portfolio Optimization: Theory and Practice is an essential resource for finance practitioners and individual investors It helps them stay on the cutting edge of modern portfolio theory and achieve the best returns on investments for themselves, their clients, and their organizations.
By:   , ,
Imprint:   John Wiley & Sons Inc
Country of Publication:   United States
Dimensions:   Height: 234mm,  Width: 158mm,  Spine: 28mm
Weight:   703g
ISBN:   9781394281312
ISBN 10:   1394281315
Series:   Wiley Finance
Pages:   384
Publication Date:  
Audience:   Professional and scholarly ,  Undergraduate
Format:   Hardback
Publisher's Status:   Active
Contents   Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 1   1 Introduction                                                                                                        3         1.1 Evolution of Portfolio Optimization . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 3         1.2 Role of Quantitative Techniques . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 3         1.3 Organization of the Book . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . .7   2 History of Portfolio Optimization                                                                     9         2.1 Early beginnings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9         2.2 Harry Markowitz’s Modern Portfolio Theory (1952) . . . . . . . . . . . . . .  12         2.3 Black-Litterman Model (1990s) . . . . . . . . . . . . . . . ……………………16         2.4 Alternative Methods: Risk Parity, Hierarchical Risk Parity and                  Machine Learning . . . . . . . . . . . . . . . . . . .  … .. . . .. . .. . .. ………. . 21                  2.4.1 Risk Parity . . . . . . . . . . . . . . . . . . . . . . . . .. . .. . . .. . . . . . .  …...21                  2.4.2 Hierarchical Risk Parity . . . . . . . . . . . . . . . . . …………………28                  2.4.3 Machine Learning . . . . . . . . . . . . . . . . . . . . . ………………. ...30        2.5 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . …………………. . . . . . 35   I Foundations of Portfolio Theory                                                   37   3 Modern Portfolio Theory                                                                                 38       3.1 Efficient Frontier and Capital Market Line . . . . . . . . . . . ……………..  38                      3.1.1 Case without riskless asset . . . . . . . . . . . . . . . . . . . .. . . . . . . 39                      3.1.2 Case with a riskless asset . . . . . . . . . . . . . . . .. . . . . . . . . . . .  44       3.2 Capital Asset Pricing Model . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . .   50                      3.2.1 Case without riskless asset . . . . . . . . . . . . . . . . . . . . . . . . . . . 50                      3.2.2 Case with a riskless asset . . . . . . . . . . . . . . . . .. . . . . . . . . . . .54        3.3 Multi-factor Models . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . 57      3.4 Challenges of Modern Portfolio Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 62                     3.4.1 Estimation Techniques in Portfolio Allocation . . . . . .. . . . . . .62                     3.4.2 Non-Elliptical Distributions and Conditional Value-at-                              Risk (CVaR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66      3.5 Quantum Annealing in Portfolio Management . . . . . . . . . . . . . . . . . . . . . 68      3.6 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70     CONTENTS   4 Bayesian Methods in Portfolio Optimization                                                           73          4.1 The Prior . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .  75          4.2 The Likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80          4.3 The Posterior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82          4.4 Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85          4.5 Hierarchical Bayesian Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90         4.6 Bayesian Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92                         4.6.1 Gaussian Processes in a Nutshell . . . . . . . . . . . . . . . . . . . . . . . . . .93                         4.6.2 Uncertainty Quantification and Bayesian Decision Theory . . . . . 97          4.7 Applications to Portfolio Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99                        4.7.1 GP Regression for Asset Returns . . . . . . . . . . . . . . . . . . . . . . . . . . 99                        4.7.2 Decision Theory in Portfolio Optimization . . . . . . . . . . . . . . . . . . 100                        4.7.3 The Black-Litterman Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103          4.8 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107   II Risk Management                                                                                  109   5 Risk Models and Measures                                                                                        110         5.1 Risk Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . 111         5.2 VaR and CVaR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 113                       5.2.1 VaR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . .. .  .114                       5.2.2 CVaR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 116         5.3 Estimation Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119                        5.3.1 Variance-Covariance Method . . . . . . . . . . . . . . . . . . . . . . . . . .. . .120                        5.3.2 Historical Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120                        5.3.3 Monte Carlo Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121         5.4 Advanced Risk Measures: Tail Risk and Spectral Measures . . . . . . . . . . . . . .121                        5.4.1 Tail Risk Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  121                        5.4.2 Spectral Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123         5.5 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127   6 Factor Models and Factor Investing                                                                        128          6.1 Single and Multi-Factor Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    129                        6.1.1 Statistical Models . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 130                        6.1.2 Macroeconomic Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131                         6.1.3 Cross Sectional Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133           6.2 Factor Risk and Performance Attribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 139           6.3 Machine Learning in Factor Investing . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 145           6.4 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148   7 Market Impact, Transaction Costs and Liquidity                                                 149          7.1 Market Impact Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ….150          7.2 Modeling Transaction Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . …153                         7.2.1 Single asset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . … 156 CONTENTS                                                  7.2.2 Multiple assets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . …..158          7.3 Optimal Trading Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . …...160                        7.3.1 Mei, DeMiguel and Nogales (2016) . . . . . . . . . . . . . .. . . . . … .. 161                        7.3.2 Skaf and Boyd (2009) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . …..164          7.4 Liquidity Considerations in Portfolio Optimization . . . . . . . . . . . . . . . …...166                        7.4.1 MV and Liquidity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167                        7.4.2 CAPM and Liquidity . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 168                        7.4.3 APT and Liquidity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 170          7.5 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 172   III Dynamic Models and Control                                                           174   8 Optimal Control                                                                                                       175         8.1 Dynamic Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . .175         8.2 Approximate Dynamic Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176         8.3 The Hamilton-Jacobi-Bellman Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177         8.4 Sufficiently Smooth Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . .179         8.5 Viscosity Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .181         8.6 Applications to Portfolio Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184                       8.6.1 Classical Merton Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .185                       8.6.2 Multi-Asset Portfolio with Transaction Costs . . . . . . . . . . . . . . . 186                       8.6.3 Risk-Sensitive Portfolio Optimization . . . . . . . . . . . . . . . . . . . . . 188                                 8.6.4 Optimal Portfolio Allocation with Transaction Costs . . . . . . . . . 189                        8.6.5 American Option Pricing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .189                        8.6.6 Portfolio Optimization with Constraints . . . . . . . . . . . . . . . . . . . 190                        8.6.7 Mean-Variance Portfolio Optimization . . . . . . . . . . . . . . . . . . . .190                        8.6.8 Sch¨odinger Control in Wealth Management . . . . . . . . . . . . . . . 191          8.7 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193   9 Markov Decision Processes                                                                                    195           9.1 Fully Observed MDPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  197           9.2 Partially Observed MDPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 199           9.3 Infinite Horizon Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .202           9.4 Finite Horizon Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .206           9.5 The Bellman Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . 208           9.6 Solving the Bellman Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .212           9.7 Examples in Portfolio Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214                         9.7.1 An MDP in Multi-Asset Allocation with Transaction                                    Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214                          9.7.2 A POMDP for Asset Allocation with Regime Switching . . . . . 214                          9.7.3 An MDP with Continuous State and Action Spaces for                                     Option Hedging with Stochastic Volatility . . . . . . . . . . . . . . . 215           9.8 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216   CONTENTS   10 Reinforcement Learning                                                                                       219           10.1 Connections to Optimal Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221                      10.1.1 Policy Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222                      10.1.2 Value Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  225                      10.1.3 Continuous vs. Discrete Formulations . . . . . . . . . . . . . . . . . . . . .226            10.2 The Environment and The Reward Function . . . . . . . . . . . . . . . . . . . . . . 228                       10.2.1 The Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228                       10.2.2 The Reward Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .232            10.3 Agents Acting in an Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235            10.4 State-Action and Value Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .238                         10.4.1 Value Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .238                         10.4.2 Gradients and Policy Improvement . . . . . . . . . . . . . . . . . . . . .240            10.5 The Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . .. . . . . . . . . . . . 243            10.6 On-Policy Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247            10.7 Off-Policy Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  249             10.8 Applications to Portfolio Optimization . . . . . . . . . . . . . . . . . . . . . . . . . 253                           10.8.1 Mean-Variance Optimization . . . . . . . . . . . . . . . . . . . . . . . . 253                           10.8.2 Reinforcement Learning Comparison with Mean-Variance                                       Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .254                            10.8.3 G-Learning and GIRL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256                            10.8.4 Continuous-time Penalization in Portfolio Optimization . . .259                            10.8.5 Reinforcement Learning for Utility Maximization . . . . . . . .260                            10.8.6 Continuous-Time Portfolio Optimization with Transaction                                        Costs . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .261             10.9 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 262   IV Machine Learning and Deep Learning                                          265 11 Deep Learning in Portfolio Management                                                          266              11.1 Neurons and Activation Functions . . . . . . . . . . . . . . . .. . . . . . . . . . .  . 266              11.2 Neural Networks and Function Approximation . . . . . . . . . . . . . . . . . . 269              11.3 Review of Some Important Architectures . . . . . . . . . . . . . . .. . . . . . . . 273              11.4 Physics-Informed Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 284              11.5 Applications to Portfolio Optimization . . . . . . . . . . . . . . . . . . . . . . . . .292                           11.5.1 Dynamic Asset Allocation Using the Heston Model . . . . . . 292                           11.5.2 Option-Based Portfolio Insurance Using the Bates Model . .293                           11.5.3 Factor Learning Approach to Generative Modeling of                                       Equities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294              11.6 The Case for and Against Deep Learning . . . . . . . . . . . . . . . . . . . . . . 296              11.7 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . .   298 12 Graph Based Portfolios                                                                                       300             12.1 Graph Theory Based Portfolios . . . . . . . . . . . . . . . . .                            300                             12.1.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .300                             12.1.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  300 CONTENTS               12.2 Equations and Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301                                12.2.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .302             12.3 Hierarchical Risk Parity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304             12.4 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .309   13 Sensitivity-based Portfolios                                                                                  310            13.1 Modelling Portfolios Dynamics with PDEs . . . . . . . . . . . . . . . . . . . . . .  312            13.2 Optimal Drivers Selection: Causality and Persistence . . . . . . . . . . .  . . . 313            13.3 AAD Sensitivities Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .319                                13.3.1 Optimal Network Selection . . . . . . . . . . . . . . . . . . . . . . .  319                                13.3.2 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .320                                13.3.3 Sensitivity Distance Matrix . . . . . . . . . . . . . . . . . . . . . . . .320                                13.4 Hierarchical Sensitivity Parity . . . . . . . . . . . . . . . . . . . . . . .322            13.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323                                 13.5.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323                                 13.5.2 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  323                                 13.5.3 Short-to-medium investments . . . . . . . . . . . . . . . . . . . . . 324                                 13.5.4 Long-term investments . . . . . . . . . . . . . . . . . . . . . . . . . . 328             13.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332   V Backtesting                                                                                         333   14 Backtesting in Portfolio Management                                                                334             14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . …………….. .. . . . . ..334             14.2 Data Preparation and Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334              14.3 Implementation of Trading Strategies . . . . . . . . . . . . . . . . . . . . . . . . . 335              14.4 Types of Backtests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336                                   14.4.1 Walk-Forward Backtest . . . . . . . . . . . . . . . . . . . . . . . . 336                                   14.4.2 Resampling Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 336                                   14.4.3 Monte Carlo Simulations and Generative Models . . . . 337              14.5 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .337              14.6 Avoiding Common Pitfalls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  338              14.7 Advanced Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  339              14.8 Case Study: Applying Backtesting to a Real-World Strategy . . . . . . . 339              14.9 Impact of Market Conditions on Backtest Results . . . . . . . . . . . . . . .  .340              14.10 Integration with Portfolio Management . . . . . . . . . . . . . . . . . . . . . .. . 340              14.11 Tools and Software for Backtesting . . . . . . . . . . . . . . . . . . . . . . .. . .   341              14.12 Regulatory Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342              14.13Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  342   15 Scenario Generation                                                                                            344              15.1 Historical Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344              15.2 Bootstrapping Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345              15.3 Copula Based Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345 CONTENTS                  15.4 Risk Factor Model Based Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . .345                15.5 Time Series Model Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .346                 15.6 Variational Autoencoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346                 15.7 Generative Adversarial Networks (GANs) . . . . . . . . . . . . . . . . . .. . . .347   Appendices                                                                                                                  348                           15.8 Software and Tools for Portfolio Optimization . . . . . . . . . . . . . . . . . 348  

MIQUEL NOGUER ALONSO is a financial markets practitioner with 25+ years of experience in asset management. He is the Founder of the Artificial Intelligence Finance Institute and serves as Head of Development at Global AI. He is also the co-editor of the Journal of Machine Learning in Finance. JULIÁN ANTOLÍN CAMARENA holds a Bachelor’s, Master’s and a PhD in physics. For his Master’s he worked on the foundations of quantum mechanics examining alternative quantization schemes and their application to exotic atoms to discover new physics. His PhD dissertation work was on computational and theoretical optics, electromagnetic scattering from random surfaces, and nonlinear optimization. He then went on to a postdoctoral stint with the U.S. Army Research Laboratory working on inverse reinforcement learning for human-autonomy teaming. ALBERTO BUENO GUERRERO has two Bachelor’s degrees in physics and economics, and a PhD in banking and finance. Since he got his doctorate, he has dedicated himself to research in mathematical finance. His work has been presented at various international conferences and published in journals such as Quantitative Finance, Journal of Derivatives, Journal of Mathematics, and Chaos, Solitons and Fractals. His article “Bond Market Completeness Under Stochastic Strings with Distribution-Valued Strategies” has been considered a feature article in Quantitative Finance.

See Also