SALE ON NOW! PROMOTIONS

Close Notification

Your cart does not contain any items

Plasma and Fluid Turbulence

Theory and Modelling

A. Yoshizawa S.I. Itoh K. Itoh

$525

Hardback

Not in-store but you can order this
How long will it take?

QTY:

English
Institute of Physics Publishing
12 November 2002
This text is founded on the belief that the co-operation of theory and modelling with direct numerical simulation and experimental observations is indispensable for forming a firm understanding of the evolution of nature, in this case the theory and modelling of plasma and fluid turbulence. In this book, modelling methodologies are explained in depth with regard to turbulence phenomena and turbulent transport in both fluids and plasmas, with special attention being paid to structural formation and transitions. The theme of the work is to show the underlying ideas describing the turbulence, turbulent transport and the structural transitions in plasmas and fluids. By comparing and contrasting turbulence in fluids and plasmas, the authors demonstrate the underlying basic physical principles common to fluids and plasmas, whilst particular differences are highlighted.
By:   , ,
Imprint:   Institute of Physics Publishing
Country of Publication:   United Kingdom
Dimensions:   Height: 234mm,  Width: 156mm,  Spine: 30mm
Weight:   975g
ISBN:   9780750308717
ISBN 10:   0750308710
Pages:   480
Publication Date:  
Audience:   College/higher education ,  Professional and scholarly ,  Professional & Vocational ,  A / AS level ,  Further / Higher Education
Format:   Hardback
Publisher's Status:   Active
Preface, Acknowledgments, PART I GENERAL INTRODUCTION, 1 Introductory Remarks, 2 Structure Formation in Fluids and Plasmas, 2.1 Flow in a Pipe, 2.1.1 Enhancement of Mixing Effects Due to Turbulence, 2.1.2 Mean-Flow Structure Formation in Pipe Flows, 2.2 Magnetic-Field Generation by Turbulent Motion, 2.3 Collimation of Jets, 2.4 Magnetic Confinement of Plasmas, 2.4.1 Magnetic Confinement and Toroidal Plasmas, 2.4.2 Flows in Toroidal Plasmas, 2.4.3 Topological Change of Magnetic Surfaces, 2.5 Nonlinearity in Transport and Structural Transition, 2.5.1 Nonlinear Gradient–Flux Relation, 2.5.2 Bifurcation in Flow, 2.5.3 Bifurcation in Structural Formation, References, PART II FLUID TURBULENCE, Nomenclature, 3 Fundamentals of Fluid Turbulence, 3.1 Fundamental Equations, 3.2 Averaging Procedures, 3.3 Ensemble-Mean Equations, 3.3.1 Mean-Field Equations, 3.3.2 Turbulence Equations, 3.4 Homogeneous Turbulence, 3.4.1 Fundamental Concepts, 3.4.2 Kolmogorov’s Scaling Law, 3.4.3 Failure of Kolmogorov’s Scaling, 3.4.4 Two-Dimensional Turbulence, 3.5 Production and Diffusion Characteristics of Turbulent Energy, References, 4 Heuristic Turbulence Modelling, 4.1 Approaches to Turbulence, 4.2 Algebraic Turbulence Modelling, 4.2.1 Modelling of Reynolds Stress, 4.2.2 Modelling of Heat Flux, 4.2.3 Modelling of Turbulence Equations, 4.2.4 The Simplest Algebraic Model, 4.2.5 Investigation into Some Representative Turbulent Flows, 4.3 Second-Order Modelling, 4.3.1 Modelling of Pressure–Strain Term, 4.3.2 Modelling of Dissipation and Transport Terms, 4.3.3 The Simplest Second-Order Model and its Relationship with a Higher-Order Algebraic Model, 4.4 A Variational-Method Model, 4.4.1 Helicity and Vortical-Structure Persistence, 4.4.2 Derivation of the Vorticity Equation Using the Variational Method, 4.4.3 Analysis of Swirling Pipe Flow, 4.4.4 Swirl Effect on Reynolds Stress, 4.5 Subgrid-Scale Modelling, 4.5.1 Filtering Procedure, 4.5.2 Filtered Equations, 4.5.3 Fixed-Parameter Modelling, 4.5.4

Akira Yoshizawa Institute of Industrial Science, University of Tokyo, Japan Sanae-I Itoh Research Institute for Applied Mechanics, Kyushu University, Japan Kimitaka Itoh National Institute for Fusion Science, Toki, Japan

See Also