ONLY $9.90 DELIVERY INFO

Close Notification

Your cart does not contain any items

Optimal Transport on Quantum Structures

Jan Maas Simone Rademacher Tamás Titkos Dániel Virosztek

$266.95   $213.50

Hardback

Not in-store but you can order this
How long will it take?

QTY:

English
Springer International Publishing AG
20 September 2024
The flourishing theory of classical optimal transport concerns mass transportation at minimal cost. This book introduces the reader to optimal transport on quantum structures, i.e., optimal transportation between quantum states and related non-commutative concepts of mass transportation. It contains lecture notes on

classical optimal transport and Wasserstein gradient flows dynamics and quantum optimal transport quantum couplings and many-body problems quantum channels and qubits

These notes are based on lectures given by the authors at the ""Optimal Transport on Quantum Structures"" School held at the Erdös Center in Budapest in the fall of 2022. The lecture notes are complemented by two survey chapters presenting the state of the art in different research areas of non-commutative optimal transport.
Edited by:   , , ,
Imprint:   Springer International Publishing AG
Country of Publication:   Switzerland
Edition:   2024 ed.
Volume:   29
Dimensions:   Height: 235mm,  Width: 155mm, 
ISBN:   9783031504655
ISBN 10:   3031504658
Series:   Bolyai Society Mathematical Studies
Pages:   321
Publication Date:  
Audience:   Professional and scholarly ,  Undergraduate
Format:   Hardback
Publisher's Status:   Active

Jan Maas is Professor at the Institute of Science and Technology Austria (ISTA). He holds a PhD degree from TU Delft and he was a post-doctoral researcher at the University of Warwick and the University of Bonn. He received an ERC Starting Grant in 2016. His research interests are in analysis and probability theory.   Simone Rademacher is a researcher in mathematical physics. She received her doctoral degree from the University of Zurich and was a post-doctoral researcher at the Institute of Science and Technology Austria (ISTA). Currently, she is an interim professor at the Ludwig-Maximilians University Munich (LMU).   Tamás Titkos is a researcher at the HUN-REN Alfréd Rényi Institute of Mathematics and an associate professor at Corvinus University of Budapest. He holds a PhD degree from Eötvös Loránd University. He is the recipient of the Youth Award and the Alexits Prize of the Hungarian Academy of Sciences. His research interest is in functional analysis.   Dániel Virosztek is a research fellow leading the Optimal Transport Research Group of the Rényi Institute. He got his Ph.D. degree in 2016 at TU Budapest and spent four years at the IST Austria as a postdoctoral researcher. He returned to Hungary with a HAS-Momentum grant in 2021. He is working on the geometry of classical and quantum optimal transport.  

See Also