MOTHER'S DAY SPECIALS! SHOW ME MORE

Close Notification

Your cart does not contain any items

$379.95

Paperback

Forthcoming
Pre-Order now

QTY:

English
Academic Press Inc
16 May 2025
Nutritional Epigenomics, Second Edition, Volume Fourteen in the Translational Epigenetics series, offers a comprehensive overview of nutritional epigenomics as a mode of study, along with nutrition’s role in the epigenomic regulation of disease, health, and developmental processes. Here, an expert team of international contributors introduces readers to nutritional epigenomic regulators of gene expression, our diet’s role in epigenomic regulation of disease and disease inheritance, caloric restriction and exercise as they relate to recent epigenomic findings, and the influence of nutritional epigenomics over circadian rhythms, aging and longevity, and fetal health and development, among other processes.

Disease specific chapters address metabolic disease (obesity and diabetes), cancer, and neurodegeneration, among other disorders. Diet-gut microbiome interactions in the epigenomic regulation of disease are also discussed, as is the role of micronutrients and milk miRNAs in epigenetic regulation. Finally, chapter authors examine ongoing discussions of race and ethnicity in the social-epigenomic regulation of health and disease. This new edition has been fully updated to reflect current research in the field.
Volume editor:  
Imprint:   Academic Press Inc
Country of Publication:   United States
Edition:   2nd edition
Dimensions:   Height: 235mm,  Width: 191mm, 
ISBN:   9780443155727
ISBN 10:   0443155720
Series:   Translational Epigenetics
Pages:   504
Publication Date:  
Audience:   Professional and scholarly ,  Undergraduate
Format:   Paperback
Publisher's Status:   Forthcoming

Bradley S. Ferguson is an Associate Professor of Nutrition at the University of Nevada, Reno, Nevada. His lab adopts integrative, translational research approaches that encompass bioinformatics, in vitro cell culture, and in vivo animal models to elucidate dietary food components that act as epigenetic modifiers, as well as the role of dietary epigenetic modifiers on pathological cardiac signaling, gene expression, and remodeling. He also seeks to understand how sarcomere protein acetylation links metabolic disease (obesity and diabetes) to pathological cardiac remodeling and skeletal muscle dysfunction. Dr. Ferguson has published his findings across a wide range of peer-reviewed journals, including Scientific Reports, Journal of Animal Science, American Journal of Physiology, Cell Reports, PNAS, and the Journal of Molecular and Cellular Cardiology.

See Also