OUR STORE IS CLOSED ON ANZAC DAY: THURSDAY 25 APRIL

Close Notification

Your cart does not contain any items

$320.95

Hardback

Not in-store but you can order this
How long will it take?

QTY:

English
John Wiley & Sons Inc
31 March 2017
"Written by established experts in the field, this book features in-depth discussions of proven scientific principles, current trends, and applications of nuclear chemistry to the sciences and engineering.

•    Provides up-to-date coverage of the latest research and examines the theoretical and practical aspects of nuclear and radiochemistry •    Presents the basic physical principles of nuclear and radiochemistry in a succinct fashion, requiring no basic knowledge of quantum mechanics •    Adds discussion of math tools and simulations to demonstrate various phenomena, new chapters on Nuclear Medicine, Nuclear Forensics and Particle Physics, and updates to all other chapters •    Includes additional in-chapter sample problems with solutions to help students •    Reviews of 1st edition: ""... an authoritative, comprehensive but succinct, state-of-the-art textbook ...."" (The Chemical Educator) and ""...an excellent resource for libraries and laboratories supporting programs requiring familiarity with nuclear processes ..."" (CHOICE)"

By:   , ,
Imprint:   John Wiley & Sons Inc
Country of Publication:   United States
Edition:   2nd edition
Dimensions:   Height: 236mm,  Width: 158mm,  Spine: 51mm
Weight:   1.225kg
ISBN:   9780470906736
ISBN 10:   0470906731
Pages:   768
Publication Date:  
Audience:   Professional and scholarly ,  Undergraduate
Format:   Hardback
Publisher's Status:   Active
Preface to the Second Edition xv Preface to the First Edition xvii 1 Introductory Concepts 1 1.1 Introduction 1 1.2 The Excitement and Relevance of Nuclear Chemistry 2 1.3 The Atom 3 1.4 Atomic Processes 4 1.4.1 Ionization 5 1.4.2 X-Ray Emission 5 1.5 The Nucleus: Nomenclature 7 1.6 Properties of the Nucleus 8 1.7 Survey of Nuclear Decay Types 9 1.8 Modern Physical Concepts Needed in Nuclear Chemistry 12 1.8.1 Elementary Mechanics 13 1.8.2 Relativistic Mechanics 14 1.8.3 de Broglie Wavelength: Wave–Particle Duality 16 1.8.4 Heisenberg Uncertainty Principle 18 1.8.5 Units and Conversion Factors 19 Problems 19 Bibliography 21 2 Nuclear Properties 25 2.1 Nuclear Masses 25 2.2 Terminology 28 2.3 Binding Energy Per Nucleon 29 2.4 Separation Energy Systematics 31 2.5 Abundance Systematics 32 2.6 Semiempirical Mass Equation 33 2.7 Nuclear Sizes and Shapes 39 2.8 Quantum Mechanical Properties 43 2.8.1 Nuclear Angular Momentum 43 2.9 Electric and Magnetic Moments 45 2.9.1 Magnetic Dipole Moment 45 2.9.2 Electric Quadrupole Moment 48 Problems 51 Bibliography 55 3 Radioactive Decay Kinetics 57 3.1 Basic Decay Equations 57 3.2 Mixture of Two Independently Decaying Radionuclides 65 3.3 Radioactive Decay Equilibrium 66 3.4 Branching Decay 76 3.5 Radiation Dosage 77 3.6 Natural Radioactivity 79 3.6.1 General Information 79 3.6.2 Primordial Nuclei and the Uranium Decay Series 79 3.6.3 Cosmogenic Nuclei 81 3.6.4 Anthropogenic Nuclei 83 3.6.5 Health Effects of Natural Radiation 83 3.7 Radionuclide Dating 84 Problems 90 Bibliography 92 4 Nuclear Medicine 93 4.1 Introduction 93 4.2 Radiopharmaceuticals 94 4.3 Imaging 96 4.4 99Tcm 98 4.5 PET 101 4.6 Other Imaging Techniques 103 4.7 Some Random Observations about the Physics of Imaging 104 4.8 Therapy 108 Problems 110 Bibliography 112 5 Particle Physics and the Nuclear Force 113 5.1 Particle Physics 113 5.2 The Nuclear Force 117 5.3 Characteristics of the Strong Force 119 5.4 Charge Independence of Nuclear Forces 120 Problems 124 Bibliography 124 6 Nuclear Structure 125 6.1 Introduction 125 6.2 Nuclear Potentials 127 6.3 Schematic Shell Model 129 6.4 Independent Particle Model 141 6.5 Collective Model 143 6.6 Nilsson Model 149 6.7 Fermi Gas Model 152 Problems 161 Bibliography 164 7 𝛂-Decay 167 7.1 Introduction 167 7.2 Energetics of α Decay 169 7.3 Theory of α Decay 173 7.4 Hindrance Factors 182 7.5 Heavy Particle Radioactivity 183 7.6 Proton Radioactivity 185 Problems 186 Bibliography 188 8 𝛃-Decay 191 8.1 Introduction 191 8.2 Neutrino Hypothesis 192 8.3 Derivation of the Spectral Shape 196 8.4 Kurie Plots 199 8.5 β Decay Rate Constant 200 8.6 Electron Capture Decay 206 8.7 Parity Nonconservation 207 8.8 Neutrinos Again 208 8.9 β-Delayed Radioactivities 209 8.10 Double β Decay 211 Problems 213 Bibliography 214 9 𝛄-Ray Decay 217 9.1 Introduction 217 9.2 Energetics of γ-Ray Decay 218 9.3 Classification of Decay Types 220 9.4 Electromagnetic Transition Rates 223 9.5 Internal Conversion 229 9.6 Angular Correlations 232 9.7 Mössbauer Effect 238 Problems 244 Bibliography 245 10 Nuclear Reactions 247 10.1 Introduction 247 10.2 Energetics of Nuclear Reactions 248 10.3 Reaction Types and Mechanisms 252 10.4 Nuclear Reaction Cross Sections 253 10.5 Reaction Observables 264 10.6 Rutherford Scattering 264 10.7 Elastic (Diffractive) Scattering 268 10.8 Aside on the Optical Model 270 10.9 Direct Reactions 271 10.10 Compound Nuclear Reactions 273 10.11 Photonuclear Reactions 279 10.12 Heavy-Ion Reactions 281 10.12.1 Coulomb Excitation 284 10.12.2 Elastic Scattering 284 10.12.3 Fusion Reactions 284 10.12.4 Incomplete Fusion 288 10.12.5 Deep-Inelastic Scattering 289 10.13 High-Energy Nuclear Reactions 291 10.13.1 Spallation/Fragmentation Reactions 291 10.13.2 Reactions Induced by Radioactive Projectiles 295 10.13.3 Multifragmentation 296 10.13.4 Quark–Gluon Plasma 298 Problems 298 Bibliography 302 11 Fission 305 11.1 Introduction 305 11.2 Probability of Fission 308 11.2.1 Liquid Drop Model 308 11.2.2 Shell Corrections 310 11.2.3 Spontaneous Fission 312 11.2.4 Spontaneously Fissioning Isomers 315 11.2.5 The Transition Nucleus 316 11.3 Dynamical Properties of Fission Fragments 323 11.4 Fission Product Distributions 327 11.4.1 Total Kinetic Energy (TKE) Release 327 11.4.2 Fission Product Mass Distribution 327 11.4.3 Fission Product Charge Distributions 330 11.5 Excitation Energy of Fission Fragments 334 Problems 337 Bibliography 338 12 Nuclear Astrophysics 339 12.1 Introduction 339 12.2 Elemental and Isotopic Abundances 340 12.3 Primordial Nucleosynthesis 343 12.3.1 Stellar Evolution 347 12.4 Thermonuclear Reaction Rates 351 12.5 Stellar Nucleosynthesis 353 12.5.1 Introduction 353 12.5.2 Hydrogen Burning 353 12.5.3 Helium Burning 357 12.5.4 Synthesis of Nuclei with A < 60 359 12.5.5 Synthesis of Nuclei with A > 60 360 12.6 Solar Neutrino Problem 366 12.6.1 Introduction 366 12.6.2 Expected Solar Neutrino Sources, Energies, and Fluxes 367 12.6.3 Detection of Solar Neutrinos 369 12.6.4 The Solar Neutrino Problem 371 12.6.5 Solution to the Problem: Neutrino Oscillations 371 12.7 Synthesis of Li, Be, and B 373 Problems 375 Bibliography 376 13 Reactors and Accelerators 379 13.1 Introduction 379 13.2 Nuclear Reactors 380 13.2.1 Neutron-Induced Reaction 380 13.2.2 Neutron-Induced Fission 383 13.2.3 Neutron Inventory 384 13.2.4 Light Water Reactors 386 13.2.5 The Oklo Phenomenon 391 13.3 Neutron Sources 392 13.4 Neutron Generators 392 13.5 Accelerators 393 13.5.1 Ion Sources 394 13.5.2 Electrostatic Machines 396 13.5.3 Linear Accelerators 400 13.5.4 Cyclotrons, Synchrotrons, and Rings 403 13.6 Charged-Particle Beam Transport and Analysis 410 13.7 Radioactive Ion Beams 415 13.8 Nuclear Weapons 421 Problems 425 Bibliography 427 14 The Transuranium Elements 429 14.1 Introduction 429 14.2 Limits of Stability 429 14.3 Element Synthesis 434 14.4 History of Transuranium Element Discovery 437 14.5 Superheavy Elements 449 14.6 Chemistry of the Transuranium Elements 453 14.7 Environmental Chemistry of the Transuranium Elements 461 Problems 468 Bibliography 469 15 Nuclear Reactor Chemistry 473 15.1 Introduction 473 15.2 Fission Product Chemistry 475 15.3 Radiochemistry of Uranium 478 15.3.1 Uranium Isotopes 478 15.3.2 Metallic Uranium 478 15.3.3 Uranium Compounds 478 15.3.4 Uranium Solution Chemistry 479 15.4 The Nuclear Fuel Cycle: The Front End 480 15.4.1 Mining and Milling 481 15.4.2 Refining and Chemical Conversion 483 15.4.3 Isotopic Enhancement 484 15.4.4 Fuel Fabrication 487 15.5 The Nuclear Fuel Cycle: The Back End 488 15.5.1 Properties of Spent Fuel 488 15.5.2 Fuel Reprocessing 490 15.6 Radioactive Waste Disposal 493 15.6.1 Classifications of Radioactive Waste 493 15.6.2 Waste Amounts and Associated Hazards 494 15.6.3 Storage and Disposal of Nuclear Waste 496 15.6.4 Spent Nuclear Fuel 497 15.6.5 HLW 498 15.6.6 Transuranic Waste 499 15.6.7 Low-Level Waste 499 15.6.8 Mill Tailings 500 15.6.9 Partitioning of Waste 500 15.6.10 Transmutation of Waste 501 15.7 Chemistry of Operating Reactors 504 15.7.1 Radiation Chemistry of Coolants 504 15.7.2 Corrosion 505 15.7.3 Coolant Activities 505 Problems 506 Bibliography 507 16 Interaction of Radiation with Matter 509 16.1 Introduction 509 16.2 Heavy Charged Particles 512 16.2.1 Stopping Power 512 16.2.2 Range 521 16.3 Electrons 526 16.4 Electromagnetic Radiation 532 16.4.1 Photoelectric Effect 534 16.4.2 Compton Scattering 536 16.4.3 Pair Production 537 16.5 Neutrons 540 16.6 Radiation Exposure and Dosimetry 544 Problems 548 Bibliography 550 17 Radiation Detectors 553 17.1 Introduction 553 17.1.1 Gas Ionization 554 17.1.2 Ionization in a Solid (Semiconductor Detectors) 554 17.1.3 Solid Scintillators 555 17.1.4 Liquid Scintillators 555 17.1.5 Nuclear Emulsions 555 17.2 Detectors Based on Collecting Ionization 556 17.2.1 Gas Ionization Detectors 557 17.2.2 Semiconductor Detectors (Solid State Ionization Chambers) 567 17.3 Scintillation Detectors 578 17.4 Nuclear Track Detectors 584 17.5 Neutron Detectors 585 17.6 Nuclear Electronics and Data Collection 587 17.7 Nuclear Statistics 589 17.7.1 Distributions of Data and Uncertainty 591 17.7.2 Rejection of Abnormal Data 597 17.7.3 Setting Upper LimitsWhen No Counts Are Observed 598 Problems 599 Bibliography 600 18 Nuclear Analytical Methods 603 18.1 Introduction 603 18.2 Activation Analysis 603 18.2.1 Basic Description of the Method 603 18.2.2 Advantages and Disadvantages of Activation Analysis 605 18.2.3 Practical Considerations in Activation Analysis 607 18.2.4 Applications of Activation Analysis 611 18.3 PIXE 612 18.4 Rutherford Backscattering 615 18.5 Accelerator Mass Spectrometry (AMS) 619 18.6 Other Mass Spectrometric Techniques 620 Problems 621 Bibliography 623 19 Radiochemical Techniques 625 19.1 Introduction 625 19.2 Unique Aspects of Radiochemistry 626 19.3 Availability of Radioactive Material 630 19.4 Targetry 632 19.5 Measuring Beam Intensity and Fluxes 637 19.6 Recoils, Evaporation Residues, and Heavy Residues 639 19.7 Radiochemical Separation Techniques 644 19.7.1 Precipitation 644 19.7.2 Solvent Extraction 645 19.7.3 Ion Exchange 648 19.7.4 Extraction Chromatography 650 19.7.5 Rapid Radiochemical Separations 652 19.8 Low-Level Measurement Techniques 653 19.8.1 Blanks 654 19.8.2 Low-Level Counting: General Principles 654 19.8.3 Low-Level Counting: Details 655 19.8.4 Limits of Detection 658 Problems 659 Bibliography 660 20 Nuclear Forensics 663 20.1 Introduction 663 20.1.1 Basic Principles of Forensic Analysis 666 20.2 Chronometry 670 20.3 Nuclear Weapons and Their Debris 672 20.3.1 RDD or Dirty Bombs 672 20.3.2 Nuclear Explosions 674 20.4 Deducing Sources and Routes of Transmission 678 Problems 680 Bibliography 681 Appendix A: Fundamental Constants and Conversion Factors 683 Appendix B: NuclearWallet Cards 687 Appendix C: Periodic Table of the Elements 711 Appendix D: Alphabetical List of the Elements 713 Appendix E: Elements of Quantum Mechanics 715 Index 737

WALTER D. LOVELAND, PhD, is a professor of chemistry at Oregon State University, USA. DAVID J. MORRISSEY, PhD, is a professor of chemistry and associate director of the National Superconducting Cyclotron Laboratory at Michigan State University, USA. GLENN T. SEABORG, PhD (deceased), was a professor of chemistry at the University of California, Berkeley, and cofounder and chairman of the Lawrence Hall of Science, USA. He is credited with discovering 10 new elements, including plutonium and one that now bears his name, seaborgium. In 1951, Dr. Seaborg and his colleague, Edwin McMillan, were awarded the Nobel Prize in Chemistry for research into transuranium elements.

See Also