Close Notification

Your cart does not contain any items

Mesoporous Zeolites: Preparation, Characterization and Applications

Javier Garcia-Martinez Kunhao Li Mark E. Davis



We can order this in for you
How long will it take?


Wiley-VCH Verlag GmbH
08 April 2015
Mineralogy & gems; Chemical engineering
Authored by a top-level team of both academic and industrial researchers in the field, this is an up-to-date review of mesoporous zeolites.

The leading experts cover novel preparation methods that allow for a purpose-oriented fine-tuning of zeolite properties, as well as the related materials, discussing the specific characterization methods and the applications in close relation to each individual preparation approach. The result is a self-contained treatment of the different classes of mesoporous zeolites.

With its academic insights and practical relevance this is a comprehensive handbook for researchers in the field and related areas, as well as for developers from the chemical industry.
Foreword by:   Mark E. Davis
Edited by:   Javier Garcia-Martinez, Kunhao Li
Imprint:   Wiley-VCH Verlag GmbH
Country of Publication:   Germany
Dimensions:   Height: 254mm,  Width: 174mm,  Spine: 35mm
Weight:   1.446kg
ISBN:   9783527335749
ISBN 10:   3527335749
Pages:   608
Publication Date:   08 April 2015
Audience:   Professional and scholarly ,  College/higher education ,  Undergraduate ,  Further / Higher Education
Format:   Hardback
Publisher's Status:   Active
Foreword XIII Preface XVII List of Contributors XXV 1 Strategies to Improve the Accessibility to the Intracrystalline Void of ZeoliteMaterials: Some Chemical Reflections 1 Joaquen Perez-Pariente and Teresa Alvaro-Munoz 1.1 Introduction 1 1.2 Strategies to Obtain New Large-Pore Materials 5 1.3 Methodologies to Control the Crystallization Process of Zeolite Materials in the Absence of Pore-Forming Agents 9 1.3.1 Confined Nucleation and Growth 11 1.3.2 Use of Blocking Agents for Crystal Growth 13 Silanization Methods 13 Use of Surfactants in the Synthesis of Silicoaluminophosphates 16 1.3.3 Synthesis in the Presence of Pore-Forming Agents 18 1.4 Postsynthesis Methodologies 21 1.4.1 Materials with High Structural Anisotropy: Layered Zeolites 21 1.4.2 Removal/Reorganization of T Atoms in the Crystal Bulk 23 1.5 Conclusions 24 Acknowledgments 25 References 25 2 Zeolite Structures of Nanometer Morphology: Small Dimensions, New Possibilities 31 Heloise de Oliveira Pastore and Dilson Cardoso 2.1 The Structures of Zeolites 34 2.1.1 FAU and EMT Structures: Zeolites X and Y 34 2.1.2 LTA Structure 50 2.1.3 BEA Structure 52 2.1.4 Pentasil Zeolites, MFI, and MEL Structures: ZSM-5, ZSM-11, and S-1 56 2.2 The Structures of Zeotypes: Aluminophosphates and Silicoaluminophosphates 63 2.3 Lamellar Zeolites 66 2.4 Conclusions and Perspectives 71 References 75 3 Nanozeolites and Nanoporous Zeolitic Composites: Synthesis and Applications 79 Gia-Thanh Vuong and Trong-On Do 3.1 Introduction 79 3.2 Synthesis of Nanozeolites 81 3.2.1 Principles 81 3.2.2 Synthesis from Clear Solutions 87 Parameters Affecting the Crystal Size 87 3.2.3 Synthesis Using Growth Inhibitor 90 3.2.4 Confined Space Synthesis 91 3.2.5 Synthesis of Nanozeolites Using Organic Media 95 3.3 Nanozeolite Composites 98 3.4 Recent Advances in Application of Nanozeolites 106 3.5 Conclusions and Perspectives 109 References 110 4 Mesostructured and Mesoporous Aluminosilicates with Improved Stability and Catalytic Activities 115 Yu Liu 4.1 Introduction 115 4.2 Zeolite/Mesoporous Composite Aluminosilicates 116 4.2.1 Synthesis of Zeolite/Mesoporous Composite Material 116 4.2.2 Catalytic Evaluation of Zeolite/Mesoporous Composite Material 124 4.3 Posttreatment of Mesostructured Materials 128 4.3.1 Posttreatment of Mesoporous Materials by Zeolite Structure-Directing Agents or Zeolite Nanocrystals 128 4.3.2 Postsynthesis Grafting of Aluminum Salts on theWalls of Mesostructured Materials 133 4.4 Mesostructured and Mesoporous Aluminosilicates Assembled from Digested Zeolite Crystals 135 4.5 Mesostructured and Mesoporous Aluminosilicates Assembled from Zeolite Seeds/Nanoclusters 141 4.5.1 Assembly of Mesostructured Aluminosilicates from Zeolite Y Seeds 141 4.5.2 Assembly of Mesostructured Aluminosilicates from Pentasil Zeolite Seeds 145 4.6 Conclusions 152 References 153 5 Development of Hierarchical Porosity in Zeolites by Using Organosilane-Based Strategies 157 David P. Serrano, Jose M. Escola, and Patricia Pizarro 5.1 Introduction 157 5.2 Types of Silanization-Based Methods 159 5.2.1 Functionalization of Protozeolitic Units with Organosilanes 159 Fundamentals of the Method 159 Influence of the Organosilane Type 163 Application to Different Zeolites 166 Influence of the Silica Source 168 Reduction of the Gel Viscosity by Means of Alcohols 169 State of the Aluminum and Acidity 171 5.2.2 Use of Silylated Polymers 173 5.2.3 Use of Amphiphile Organosilanes 175 5.3 Catalytic Applications 180 5.3.1 Fine Chemistry 180 5.3.2 Oil Refining and Petrochemistry 185 5.3.3 Production of Advanced Fuels 189 5.4 Conclusions 193 5.5 New Trends and Future Perspectives 195 References 196 6 Mesoporous Zeolite Templated from Polymers 199 Xiangju Meng and Feng-Shou Xiao 6.1 Introduction 199 6.2 Cationic Polymer Templating 200 6.3 Nonionic Polymer Templating 203 6.4 Silane-Functionalized Polymer Templating 208 6.5 Polymer-Surfactant Complex Templating 210 6.6 Morphology Control of Mesoporous Zeolites Using Polymers 212 6.7 Zeolites with Oriented Mesoporous Channels 218 6.8 Microfluidic Synthesis of Mesoporous Zeolites 220 6.9 Nonsurfactant Cationic Polymer as a Dual-Function Template 220 6.10 Conclusions 224 References 224 7 Nanofabrication of Hierarchical Zeolites in Confined Space 227 Zhuopeng Wang and Wei Fan 7.1 Introduction of Confined Space Synthesis 227 7.2 General Principles of Confined Space Synthesis 228 7.3 Crystallization Mechanisms of Zeolite under Hydrothermal Conditions 228 7.4 Preparation of Synthesis Gel within the Confined Space of Inert Matrices 230 7.5 Crystallization of Zeolite within Confined Space 230 7.6 Synthesis of Hierarchical Zeolites in Carbon Blacks, Nanotubes, and Nanofibers by SAC Method 232 7.7 Synthesis of Hierarchical Zeolites within Ordered Mesoporous Carbons by SAC and VPTMethods 234 7.8 Synthesis of Hierarchical Zeolites within Carbon Aerogels, Polymer Aerogels, and other Carbon Materials 241 7.9 Synthesis of Hierarchical Zeolites within Carbon Materials Using Seeded Growth Method 243 7.10 Confined Synthesis of Zeolites in Polymer and Microemulsions 248 7.11 Conclusions 250 References 253 8 Development of Hierarchical Pore Systems for Zeolite Catalysts 259 Masaru Ogura and Masahiko Matsukata 8.1 Introduction 259 8.2 Alkali Treatment of ZSM-5: Effects of Alkaline Concentration, Treatment Temperature, and Treatment Duration 260 8.3 Desilication of ZSM-5: Effects of Temperature and Time 263 8.4 Alkali Treatment of ZSM-5 with Various Si/Al Molar Ratios: Effect of Si/Al on Mesopore Formation 263 8.5 Desilication of ZSM-5: Effects of Other Descriptors 272 8.6 Desilication of Silicalite-1 273 8.7 Desilication of Other Zeolites: Multidimensionalization of Low-Dimensional Microstructures 277 8.8 Desilicated Zeolites for Applications - Test Reactions 280 8.9 Desilicated Zeolites for Applications - Superior Diffusion 284 8.10 Desilicated Zeolites for Novel Applications 289 8.11 Summary 291 References 292 9 Design and Catalytic Implementation of Hierarchical Micro-Mesoporous Materials Obtained by Surfactant-Mediated Zeolite Recrystallization 295 Irina I. Ivanova, Elena E. Knyazeva, and Angelina A. Maerle 9.1 Introduction 295 9.2 Mechanism of Zeolite Recrystallization 296 9.3 Synthetic Strategies Leading to Different Types of Recrystallized Materials 301 9.4 Coated Mesoporous Zeolites (RZEO-1) 303 9.5 Micro-Mesoporous Nanocomposites (RZEO-2) 308 9.6 Mesoporous Materials with Zeolitic Fragments in theWalls (RZEO-3) 312 9.7 Conclusions 316 Acknowledgment 318 References 318 10 Surfactant-Templated Mesostructuring of Zeolites: FromDiscovery to Commercialization 321 Kunhao Li,Michael Beaver, Barry Speronello, and Javier Garcia-Martinez 10.1 Introduction 321 10.2 Surfactant-Templated Mesostructuring of Zeolites 326 10.3 Mesostructured Zeolite Y for Fluid Catalytic Cracking Applications 334 10.4 Beyond Catalysis: Mesostructured Zeolite X for Adsorptive Separations 341 10.5 Concluding Remarks 344 References 345 11 Physical Adsorption Characterization of Mesoporous Zeolites 349 Matthias Thommes, Remy Guillet-Nicolas, and Katie A. Cychosz 11.1 Introduction 349 11.2 Experimental Aspects 352 11.2.1 General 352 11.2.2 Choice of Adsorptive 354 11.3 Adsorption Mechanism 357 11.4 Surface Area, Pore Volume, and Pore Size Analysis 363 11.4.1 Surface Area 363 11.4.2 Pore Size Analysis 367 General Aspects 367 Pore Size Analysis: Hierarchically Structured Materials 370 11.5 Probing Hierarchy and Pore Connectivity in Mesoporous Zeolites 376 11.6 Summary and Conclusions 378 References 379 12 Measuring Mass Transport in Hierarchical Pore Systems 385 Joerg Karger, Rustem Valiullin, Dirk Enke, and Roger Glaser 12.1 Types of Pore Space Hierarchies in Nanoporous Host Materials 385 12.2 Hierarchy of Mass Transfer Parameters and Options of Their Measurement Techniques 389 12.2.1 Diffusion Fundamentals 389 12.2.2 Techniques of Diffusion Measurement 392 Macroscopic Diffusion Studies: Uptake and Release 392 Microscopic Diffusion Measurement: Molecular Displacements 396 Microscopic Diffusion Measurement: Transient Concentration Profiles 399 12.3 Diffusion Measurement in Various Types of Pore Space Hierarchies 400 12.3.1 Macro/Meso 400 12.3.2 Macro/Micro 401 12.3.3 Meso/Meso 404 12.3.4 Meso/Micro 407 PFG NMR DiffusionMeasurements in Y-Type Zeolites: A Case Study with FCC Catalysts 407 Mass Transfer in Mesoporous LTA-Type Zeolites: An In-Depth Study of Diffusion Phenomena in Mesoporous Zeolites 409 Diffusion Studies with Mesoporous Zeolite of Structure-Type CHA: Breakdown of the Fast-Exchange Model 414 The Impact of Hysteresis 415 12.4 Conclusions and Outlook 416 References 417 13 Structural Characterization of Zeolites and Mesoporous Zeolite Materials by ElectronMicroscopy 425 Wei Wan, Changhong Xiao, and Xiaodong Zou 13.1 Introduction 425 13.2 Characterization of Zeolites by Electron Diffraction 426 13.2.1 Geometry of Electron Diffraction 427 13.2.2 Conventional Electron Diffraction 428 13.2.3 Three-Dimensional (3D) Electron Diffraction 430 13.3 Characterization of Zeolite and Mesoporous Materials by High-Resolution Transmission Electron Microscopy 433 13.3.1 Introduction to HRTEM 433 13.3.2 Working with Electron-Beam-Sensitive Materials 434 13.3.3 Structure Projection Reconstruction from Through-Focus HRTEM Images 435 13.3.4 3D Reconstruction of HRTEM Images 437 13.4 Characterization of Zeolite and Mesoporous Materials by Electron Tomography (ET) 440 13.4.1 Basic Principles of Electron Tomography 440 13.4.2 Applications of Electron Tomography on Mesoporous Zeolites 443 Quantification of Mesopores in Zeolite Y 443 Quantification of Pt Nanoparticles in Mesoporous Zeolite Y 444 Orientation Relationship between the Intrinsic Micropores of Zeolite Y andMesopore Structures 445 Single-Crystal Mesoporous Zeolite Beta Studied by Transmission Scanning Electron Microscopy (STEM) 448 13.5 Other Types of Mesoporous Zeolites Studied by EM 450 13.5.1 Aluminosilicate Zeolite ZSM-5 Single Crystals with b-Axis-Aligned Mesopores 450 13.5.2 Mesoporous Zeolite LTA 451 13.5.3 Ultrasmall EMT Crystals with Intercrystalline Mesopores from Organic Template-Free Synthesis 452 13.5.4 Self-Pillared Zeolites with Interconnected Micropores and Mesopores 452 13.6 Future Perspectives 454 13.7 Conclusions 455 Acknowledgments 456 References 456 14 Acidic Properties of Hierarchical Zeolites 461 Jerzy Datka, Karolina Tarach, and Kinga Gora-Marek 14.1 Short Overview of Experimental Methods Employed for Acidity Investigations 461 14.2 Hierarchical Zeolites Obtained by Templating and Dealumination of Composite Materials 463 14.2.1 Surfactant Templating Approach 465 14.2.2 Dealumination 470 14.3 Hierarchical Zeolites Obtained by Desilication 471 14.3.1 Studies of Desilicated Zeolites Acidity 471 Analysis of the Hydroxyl Groups Spectra 471 Concentration of Acid Sites 474 Studies of Acid Sites Strength 475 Realumination: Mesopore Surface Enrichment in Al Species 476 Nature and Origin of Lewis Acid Sites in Desilicated Zeolites 477 14.3.2 Accessibility of Acid Sites in Desilicated Zeolites 481 14.4 Conclusions and Future Perspectives 487 Acknowledgments 489 References 489 15 Mesoporous Zeolite Catalysts for Biomass Conversion to Fuels and Chemicals 497 Kostas S. Triantafyllidis, Eleni F. Iliopoulou, Stamatia A. Karakoulia, Christos K. Nitsos, and Angelos A. Lappas 15.1 Introduction to Mesoporous/Hierarchical Zeolites 497 15.2 Potential of Hierarchical Zeolites as Catalysts for the Production of Renewable/Biomass-Derived Fuels and Chemicals 503 15.3 Catalytic Fast Pyrolysis (CFP) of Lignocellulosic Biomass 508 15.4 Catalytic Cracking of Vegetable Oils 514 15.5 Hydroprocessing of Biomass-Derived Feeds 516 15.6 Methanol to Hydrocarbons 524 15.6.1 Methanol to Dimethyl Ether (DME) 525 15.6.2 Methanol to Gasoline (MTG)/Methanol to Olefins (MTO) 527 15.7 Other Processes 533 15.8 Summary and Outlook 535 References 536 16 Industrial Perspectives for Mesoporous Zeolites 541 Roberto Millini and Giuseppe Bellussi 16.1 Introduction 541 16.2 Enhancing the Effectiveness of the Zeolite Catalysts 543 16.2.1 Increasing the Pore Size 544 16.2.2 Hierarchical (Mesoporous) Zeolites 546 16.3 Industrial Assessment of Mesoporous Zeolite 555 16.4 Conclusions 560 References 561 Index 565

Javier Garcia-Martinez is the founder of and chief scientist at Rive Technology, Inc. in Boston, USA, a spin-off from MIT that commercializes mesostructured zeolites to the refining industry. He is also Professor of Inorganic Chemistry and the director of the Molecular Nanotechnology Lab at the University of Alicante, Spain. Since 2011 he is a member of the Bureau of IUPAC and Fellow of the Royal Society of Chemistry. His work has been honored with the European Young Chemist Award in 2006, MIT's Technology Review Award (TR35) in 2007, and by the World Economic Forum, which selected him as a Young Global Leader in 2009. Professor Garcia-Martinez has published extensively in the areas of nanomaterials, catalysis, and energy, and also has over 25 patents to his name. His latest books are Nanotechnology for the Energy Challenge (Wiley-VCH, 2014) and The Chemical Element (Wiley-VCH, 2011). Kunhao Li is a Project Leader at Rive Technology, Inc. since 2008. He has been heavily involved in the improvement of Rive's core technology in zeolite mesostructuring processes, zeolites and catalysts characterization, testing, and evaluation, as well as extension of application areas of mesostructured zeolites to chemical separations and other catalytic processes. He obtained PhD in chemistry at The George Washington University and did postdoctoral research at Rutgers University. His research work has resulted in many publications in the form of original papers and reviews, book chapters, technical reports, patent applications, and patents.

Reviews for Mesoporous Zeolites: Preparation, Characterization and Applications

'This book is interesting and very informative. It broadly covers all areas of mesoporous materials: synthesis, characterisation and application.' (Johnson Matthey Process Technology 2016)

See Also