This book is devoted to research in the actual field of mathematical modeling in modern problems of plasma physics associated with vibrations and wake waves excited by a short high-power laser pulse. The author explores the hydrodynamic model of the wake wave in detail and from different points of view, within the framework of its regular propagation, a development suitable for accelerating electrons, and the final tipping effect resulting in unregulated energy transfer to plasma particles.
Key selling features:
Presents research directly related to the propagation of super-power short laser pulses (subject of the 2018 Nobel Prize in Physics).
Presents mathematical modeling of plasma physics associated with vibrations and wake waves excited by a short high-power laser pulse.
Includes studies of large-amplitude plasma oscillations.
Most of the presented results are of original nature and have not appeared in the domestic and foreign scientific literature
Written at a level accessible for researchers, academia, and engineers.
By:
E.V. Chizhonkov (Lomonosov Moscow State University Moscow RU) Imprint: CRC Press Country of Publication: United Kingdom Dimensions:
Height: 234mm,
Width: 156mm,
Weight: 453g ISBN:9781032240152 ISBN 10: 1032240156 Pages: 310 Publication Date:13 December 2021 Audience:
College/higher education
,
General/trade
,
Primary
,
ELT Advanced
Format:Paperback Publisher's Status: Active
Free plasma oscillations. Introductory Information. Planar one-dimensional non-relativistic oscillations (P1NE-equations). Planar one-dimensional relativistic oscillations (P1RE-equations). Cylindrical one-dimensional oscillations (equations C1RE and C1NE). Influence of ion dynamics (P1EI-equations). Planar two-dimensional relativistic oscillations (P2RE-equations). Plasma wake waves. Preliminary information. Numerical Algorithms for the Basic Task. Additional Studies. Literature.
E.V. Chizhonkov, Lomonosov Moscow State University, Moscow, RU