PERHAPS A GIFT VOUCHER FOR MUM?: MOTHER'S DAY

Close Notification

Your cart does not contain any items

$283.95

Paperback

Not in-store but you can order this
How long will it take?

QTY:

English
Elsevier Science Publishing Co Inc
08 December 2021
Magnetospheric Imaging: Understanding the Space Environment through Global Measurements is a state-of-the-art resource on new and advanced techniques and technologies used in measuring and examining the space environment on a global scale. Chapters detail this emergent field by exploring optical imaging, ultraviolet imaging, energetic neutral atom imaging, X-ray imaging, radio frequency imaging, and magnetic field imaging. Each technique is clearly described, with details about the technologies involved, how they work, and both their opportunities and limitations. Magnetospheric imaging is still a relatively young capability in magnetospheric research, hence this book is an ideal resource on this burgeoning field of study.

This book is a comprehensive resource for understanding where the field stands, as well as providing a stepping stone for continued advancement of the field, from developing new techniques, to applying techniques on other planetary bodies.

Edited by:   , , , , , , , , , , ,
Imprint:   Elsevier Science Publishing Co Inc
Country of Publication:   United States
Dimensions:   Height: 235mm,  Width: 191mm, 
Weight:   860g
ISBN:   9780128206300
ISBN 10:   0128206306
Pages:   428
Publication Date:  
Audience:   Professional and scholarly ,  Undergraduate
Format:   Paperback
Publisher's Status:   Active

Yaireska Collado-Vega is a scientist and the director of the Moon to Mars Space Weather Office. The Moon to Mars Space Weather Office (M2M) was established to support NASA’s Space Radiation Analysis Group (SRAG) with human space exploration activities by providing expert based analysis of the space radiation environment. The office also supports NASA robotic missions by providing space weather notifications and anomaly assessments. Other parts of her research interest involve identifying Kelvin-Helmholtz Instability boundary waves and Flux Transfer Events at the Earth’s magnetopause boundary. She is also part of the development of a Soft X-Ray Magnetosphere Imager inter-divisional team at NASA GSFC. She has worked for NASA for 17 years. Dennis Gallagher has worked for NASA since 1984. He has worked in a variety of areas including the study of low frequency plasma waves, including ion acoustic waves, terrestrial micropulsations, wave-packet bursts upstream of the Jovian bow shock, and dust impacts during transit of the Saturnian ring plane. His primary work has involved the study of cold plasma transport, modeling, and imaging. Harald Frey is a Research Physicist at Berkeley’s Space Sciences Laboratory. His research interests in space physics concentrate on the connection between the outer magnetosphere and the ionosphere of Earth established by plasma processes in the upper atmosphere and ionosphere. This includes observations of aurora and airglow, as well as the combination of satellite and ground data and investigating the dynamics and creation of auroral arcs. Simon Wing has more than 20 years’ experience in space physics and space weather. He has authored and co-authored over 100 papers and over 300 talks, and developed the Wing Kp Model that runs at several space weather centers around the world. He also developed a technique for imaging plasma sheet ion properties from ionospheric observations. He is currently a Principal Staff Physicist at the Johns Hopkins University Applied Physics Laboratory.

See Also