ONLY $9.90 DELIVERY INFO

Close Notification

Your cart does not contain any items

Large-Scale Structure of the Universe

Cosmological Simulations and Machine Learning

Kana Moriwaki

$340.95   $273.14

Hardback

Not in-store but you can order this
How long will it take?

QTY:

English
Springer Verlag, Singapore
02 November 2022
Series: Springer Theses
Line intensity mapping (LIM) is an observational technique that probes the large-scale structure of the Universe by collecting light from a wide field of the sky. This book demonstrates a novel analysis method for LIM using machine learning (ML) technologies. The author develops a conditional generative adversarial network that separates designated emission signals from sources at different epochs. It thus provides, for the first time, an efficient way to extract signals from LIM data with foreground noise. The method is complementary to conventional statistical methods such as cross-correlation analysis. When applied to three-dimensional LIM data with wavelength information, high reproducibility is achieved under realistic conditions. The book further investigates how the trained machine extracts the signals, and discusses the limitation of the ML methods. Lastly an application of the LIM data to a study of cosmic reionization is presented. This book benefits students and researchers who are interested in using machine learning to multi-dimensional data not only in astronomy but also in general applications.
By:  
Imprint:   Springer Verlag, Singapore
Country of Publication:   Singapore
Edition:   2022 ed.
Dimensions:   Height: 235mm,  Width: 155mm, 
Weight:   371g
ISBN:   9789811958793
ISBN 10:   9811958793
Series:   Springer Theses
Pages:   120
Publication Date:  
Audience:   College/higher education ,  Further / Higher Education
Format:   Hardback
Publisher's Status:   Active
Introduction.- Observations of the Large-Scale Structure of the Universe.- Modeling Emission Line Galaxies.- Signal Extraction from Noisy LIM Data.- Signal Separation from Confused LIM Data.- Signal Extraction from 3D LIM Data.- Application of LIM Data for Studying Cosmic Reionization.- Summary and Outlook.- Appendix.

Kana Moriwaki is an assistant professor in the School of Science at the University of Tokyo. She received her Ph.D. from the University of Tokyo in 2022 and was awarded the University of Tokyo President's Grand Prize. Her interest lies in cosmological simulations and the application of machine learning techniques for astronomical data.  

See Also