PERHAPS A GIFT VOUCHER FOR MUM?: MOTHER'S DAY

Close Notification

Your cart does not contain any items

LaQue's Handbook of Marine Corrosion

David A. Shifler (U.S. Department of the Navy, USA)

$406.95

Hardback

Not in-store but you can order this
How long will it take?

QTY:

English
John Wiley & Sons Inc
22 June 2022
The new edition of LaQue's classic text on marine corrosion, providing fully updated control engineering practices and applications

Extensively updated throughout, the second edition of La Que's Handbook of Marine Corrosion remains the standard single-source reference on the unique nature of seawater as a corrosive environment. Designed to help readers reduce operational and life cycle costs for materials in marine environments, this authoritative resource provides clear guidance on design, materials selection, and implementation of corrosion control engineering practices for materials in atmospheric, immersion, or wetted marine environments.

Completely rewritten for the 21st century, this new edition reflects current environmental regulations, best practices, materials, and processes, with special emphasis placed on the engineering, behavior, and practical applications of materials. Divided into three parts, the book first explains the fundamentals of corrosion in marine environments, including atmospheric corrosion, erosion, microbiological corrosion, fatigue, environmental cracking, and cathodic delamination. The second part discusses corrosion control methods and materials selection that can mitigate or eliminate corrosion in different marine environments. The third section provides the reader with specific applications of corrosion engineering to structures, systems, or components that exist in marine environments.

This much-needed new edition:

Presents a comprehensive and up-to-date account of the science and engineering aspects of marine corrosion Focuses on engineering aspects, descriptive behavior, and practical applications of materials usage in marine environments Addresses the various materials used in marine environments, including metals, polymers, alloys, coatings, and composites Incorporates current regulations, standards, and recommended practices of numerous organizations such as ASTM International, the US Navy, the American Bureau of Shipping, the International Organization for Standardization, and the International Maritime Organization

Written in a clear and understandable style, La Que's Handbook of Marine Corrosion, Second Edition is an indispensable resource for engineers and materials scientists in disciplines spanning the naval, maritime, commercial, shipping industries, particularly corrosion engineers, ship designers, naval architects, marine engineers, oceanographers, and other professionals involved with products that operate in marine environments.

Edited by:  
Imprint:   John Wiley & Sons Inc
Country of Publication:   United States
Edition:   2nd edition
Dimensions:   Height: 10mm,  Width: 10mm, 
Weight:   454g
ISBN:   9781119788836
ISBN 10:   1119788838
Series:   The ECS Series of Texts and Monographs
Pages:   752
Publication Date:  
Audience:   Professional and scholarly ,  Undergraduate
Format:   Hardback
Publisher's Status:   Active
List of Contributors xix Preface xxi 1 The Nature of Marine Environments 1 Bopinder Phull 1.1 Introduction 1 1.2 Seawater Chemistry 2 1.2.1 Chemical Composition of Seawater 2 1.2.1.1 Role of Ions 3 1.2.1.2 Dissolved Gases 5 1.2.1.3 Scale-Forming Compounds 8 1.2.1.4 Suspended Matter 9 1.2.1.5 pH 10 1.2.1.6 Chlorination 10 1.3 Physical 11 1.3.1 Temperature 11 1.3.2 Electrolytic Resistivity of Seawater 13 1.3.3 Velocity Effects 14 1.3.4 Effects of Depth 17 1.3.5 Splash and Tidal Zones 18 1.3.6 Bottom Sediments 20 1.4 Biological Effects 21 1.4.1 Microorganisms, Biofilms, and Biofouling 21 1.5 Testing 24 References 25 2 Electrochemistry and Forms of Corrosion 29 David A. Shifler 2.1 Introduction 29 2.2 Corrosion Thermodynamics 30 2.3 Corrosion Kinetics 30 2.4 Passivity 33 2.5 Corrosion Mechanistic Modes 34 2.5.1 Stray Current Corrosion 35 2.5.2 Galvanic Corrosion 35 2.5.3 Crevice Corrosion 37 2.5.4 Pitting 38 2.5.5 Intergranular Corrosion 38 2.5.6 Microbiological-Influenced Corrosion 40 2.5.7 Dealloying 41 2.5.8 Flow-Influenced Corrosion 42 2.6 Environmentally Induced Cracking 43 2.6.1 Stress Corrosion Cracking 43 2.6.2 Fatigue and Corrosion Fatigue 44 2.6.3 High-Temperature Corrosion 45 2.7 Factors Influencing Corrosion 46 References 47 3 Atmospheric Corrosion in Marine Environments 49 David G. Enos 3.1 Introduction 49 3.2 Understanding the Environment (Important Factors) 49 3.2.1 Humidity 51 3.2.2 Temperature 53 3.2.3 Solid and Liquid Contaminants (Salt Particulates, Seawater Aerosol, Dust, etc.) 53 3.2.4 Gaseous Contaminants 55 3.2.5 Physical Environment 55 3.3 Basic Electrochemistry of Atmospheric Corrosion 57 3.4 Corrosion Testing 59 3.4.1 Accelerated Testing 59 3.4.2 Long-Term Field Testing 59 3.5 Modeling 59 3.6 Summary 60 Acknowledgment 60 References 60 4 Localized Corrosion 63 David A. Shifler 4.1 Introduction 63 4.2 Pitting 63 4.2.1 Cast Irons 65 4.2.2 Carbon Steels 66 4.2.3 Stainless Steels 66 4.2.4 Nickel Alloys 69 4.2.5 Aluminum Alloys 72 4.2.6 Copper Alloys 73 4.2.7 Titanium Alloys 77 4.3 Crevice Corrosion 78 4.3.1 Cast Irons 81 4.3.2 Carbon Steels 82 4.3.3 Stainless Steels 82 4.3.4 Nickel Alloys 86 4.3.5 Aluminum Alloys 89 4.3.6 Copper Alloys 91 4.3.7 Titanium Alloys 92 4.4 Intergranular Corrosion 93 4.4.1 Cast Irons 94 4.4.2 Carbon Steels 94 4.4.3 Stainless Steels 95 4.4.4 Nickel Alloys 97 4.4.5 Aluminum Alloys 98 4.4.6 Copper Alloys 101 4.4.7 Titanium Alloys 102 4.5 Dealloying 102 4.5.1 Cast Irons 103 4.5.2 Carbon Steels 104 4.5.3 Stainless Steels 104 4.5.4 Nickel Alloys 104 4.5.5 Aluminum Alloys 104 4.5.6 Copper Alloys 105 4.5.7 Titanium Alloys 108 References 108 Further Reading 121 5 Galvanic Corrosion 123 Roger Francis 5.1 Introduction 123 5.2 Conditions Necessary for Galvanic Corrosion 124 5.3 Factors Affecting Galvanic Corrosion 125 5.3.1 Electrode Potential 125 5.3.2 Potential Variability 126 5.3.3 Electrode Efficiency 127 5.3.4 Electrolyte 129 5.3.5 Area Ratio 129 5.3.6 Aeration and Flow Rate 132 5.3.7 Metallurgical Condition and Composition 133 5.3.8 Stifling Effects 134 5.4 Alloy Groups 135 5.4.1 Group 1 Alloys 136 5.4.2 Group 2 Alloys 136 5.4.3 Group 3 Alloys 138 5.4.4 Group 4 Alloys 140 5.5 Marine Atmospheres 142 5.5.1 Factors Affecting Atmospheric Corrosion 142 5.5.2 Materials Compatibility 143 5.5.3 Atmospheric Variability 145 5.5.4 Tropical Atmospheres 145 5.6 Methods of Prevention 147 5.6.1 Materials 147 5.6.2 Insulation and Separation 147 5.6.3 Painting/Coatings 148 5.6.4 Cathodic Protection (CP) 149 5.6.5 Inhibitors 150 5.7 Design 150 References 151 6 The Effects of Turbulent Flow on Corrosion in Seawater 155 K. Daniel Efird 6.1 Introduction 155 6.1.1 Evaluating Flow Effects 155 6.2 The Basics of Turbulent Flow and Corrosion 156 6.2.1 The Nature of Turbulent Flow 156 6.2.2 Disturbed Flow 159 6.3 Erosion-Corrosion 159 6.3.1 Cavitation Corrosion 160 6.4 Flow Effects for Specific Materials 161 6.4.1 Carbon and Low Alloy Steels and Cast Irons 161 6.4.2 Copper Alloys 162 6.4.3 Passive Alloys 163 6.5 Flow Effects in Specific Facility Applications 164 6.A Wall Shear Stress and Mass Transfer Coefficient Defined 167 6.A.1 Wall Shear Stress 167 6.A.2 Mass Transfer Coefficient 168 6.A.3 Interrelationship of Mass Transfer Coefficient and Wall Shear Stress 168 6.B University of Tulsa Erosion Model 169 References 169 7 Biological Fouling and Corrosion Processes 173 Brenda J. Little and Jason S. Lee 7.1 Introduction 173 7.2 Development of Marine Fouling 174 7.2.1 Microfouling 174 7.2.2 Macrofouling 176 7.3 Influence of Marine Fouling on Corrosion 177 7.3.1 Corrosion Mechanisms Related to Generic Properties of Fouling Organisms 177 7.3.1.1 Oxygen Concentration Cells 177 7.3.1.2 Ennoblement 178 7.3.1.3 Galvanic Corrosion 178 7.3.2 Reactions Attributed to Specific Groups of Bacteria and Archaea 179 7.3.2.1 Sulfate Reduction 179 7.3.2.2 Sulfide Reactions with Specific Metals 179 7.3.2.3 Acid Production 181 7.3.2.4 Microbial Oxidation/Reduction of Iron 181 7.4 Diagnosis 182 7.5 Control and Prevention 182 7.5.1 Coatings 183 7.5.2 Biocidal Treatments 183 7.5.3 Cathodic Protection 183 7.5.4 Deoxygenation 184 7.5.5 Flow 185 7.6 Commentary 185 References 186 8 Marine Biofouling 191 Simone Dürr, Robert Edyvean, and Eleanor Ramsden-Lister 8.1 What Is Biofouling? 191 8.2 Development of Biofouling on New Artificial Surfaces 192 8.2.1 Macromolecules (Conditioning Film) 192 8.2.2 Bacteria 192 8.2.3 Diatoms, Protozoans 195 8.2.4 Larvae and Spores 195 8.3 Established Biofouling Communities 197 8.4 The Effect of Biofouling on the Corrosion of Metals in the Marine Environment 199 8.5 Past and Present Antifouling Strategies on Metals Used in the Marine Environment 201 8.5.1 Tributyltin (TBT) Self-Polishing Copolymer Paints 201 8.5.2 Controlled Depletion Polymers (CDPs)/Self-Polishing Containing Biocides and Booster Biocides 201 8.5.3 Foul Release Coatings 202 8.5.4 Electrochemical Control 203 8.5.5 Electrochlorination 204 8.5.6 Ultrasonics for Antifouling 204 8.5.7 Mechanical Cleaning and Prevention 205 8.5.8 Enzymes 205 8.5.9 Biomimetics and Bioinspiration 206 8.6 Conclusion 206 References 207 9 Environmentally Enhanced Fatigue 215 James Burns 9.1 Introduction 215 9.2 Precorrosion Effects 218 9.3 Loading Environment Effects 221 9.4 Crack Initiation 221 9.5 Crack Propagation 223 9.5.1 Aluminum 223 9.5.2 Titanium 225 9.5.3 Steel 226 9.6 Effect of Corrosion Mitigation Techniques on Fatigue 230 9.7 Conclusion 231 References 232 10 Effects of Stress – Environment Assisted Cracking 239 John R. Scully 10.1 Introduction 239 10.2 High-Strength Steels 242 10.2.1 Physical Metallurgy 242 10.2.2 General Susceptibility Trends 243 10.2.3 Dependence on Applied Potential 245 10.3 Stainless Steels 249 10.3.1 Physical Metallurgy 249 10.3.2 General Susceptibility Trends 251 10.3.3 Dependence on Applied Potential 254 10.4 Precipitation Hardened Stainless Steels 254 10.4.1 Physical and Mechanical Metallurgy of Precipitation Hardened Stainless Steel 254 10.4.2 General Susceptibility Trends 255 10.4.3 Effect of Applied Potential 260 10.5 Titanium Alloys 261 10.5.1 Physical Metallurgy 261 10.5.2 General Susceptibility Trends 263 10.5.3 Effect of Potential 264 10.6 High-Strength Aluminum Alloys 266 10.6.1 Physical Metallurgy 266 10.6.2 General Susceptibility Trends 268 10.6.3 Effects of Potential 271 10.7 Nickel Base Alloys 272 10.7.1 Physical Metallurgy 272 10.7.2 General Susceptibility Trends 273 10.7.2.1 Effects of Applied Potential 277 10.8 Copper, Copper Alloys, and Aluminum Bronze Alloys 277 10.8.1 Physical Metallurgy 277 10.8.2 General Susceptibility Trends 278 10.9 Magnesium Alloys 279 10.9.1 Physical Metallurgy 279 10.9.2 General Susceptibility Trends and Effects of Potential 279 References 280 11 Cathodic Delamination 291 Thomas Ramotowski 11.1 Introduction 291 11.2 Mechanisms for Cathodic Delamination 293 11.3 Cathodic Delamination Mitigation Strategies 296 References 298 12 High Temperature Corrosion in Marine Environments 301 David A. Shifler 12.1 Introduction 301 12.1.1 High Temperature Corrosion and Degradation Processes 301 12.2 Boilers 302 12.3 Diesel Engines 306 12.4 Gas Turbine Engines 309 12.4.1 High-Temperature Coatings 317 12.4.2 Factors Affecting Operational Life 319 12.5 Incinerators 319 12.6 Fuels 324 References 328 13 Design for Corrosion Control in Marine Environments 335 David A. Shifler 13.1 Introduction 335 13.2 General Design Approach 336 13.3 Corrosion Control Design Choices for Marine Structures 339 13.3.1 Materials 339 13.3.2 Organic Coatings 339 13.3.3 Metallic Coatings 340 13.3.4 Cathodic Protection 341 13.3.5 Inhibitors 341 13.4 Structural Designs that Minimize Corrosion 342 13.5 Inspection to Evaluate Conformance to Design, Repair Criteria 345 13.6 Ship Design in Marine Environments 346 13.6.1 Military Ships and Assets 346 13.6.2 Commercial Ship Design 348 13.6.3 Cruise Ship Design 349 13.7 Offshore Structural Design in Marine Environments 350 13.8 Summary 351 References 351 Further Reading 353 Ships 353 Offshore Structures 354 14 Modeling of Marine Corrosion Processes 355 Jason S. Lee, David G. Enos, Roger Francis, Sean Brossia, and David A. Shifler 14.1 Introduction 355 14.2 Computational Approaches 355 14.3 Assumptions in Modeling 356 14.4 Galvanic Corrosion 357 14.5 Localized Corrosion 359 14.5.1 Crevices 360 14.5.2 Cracks 363 14.5.3 Pitting 363 14.5.4 Intergranular Corrosion 364 14.6 General Corrosion 364 14.7 Atmospheric Corrosion Models 365 14.7.1 Holistic Atmospheric Corrosion Model 365 14.7.2 GILDES Model 366 14.8 Cathodic Protection 367 14.9 Recent Modeling Advances 369 14.9.1 Future Directions of DFT 370 14.10 Limitations and Future Needs 371 14.11 Summary 372 References 373 15 Marine Corrosion Testing 379 David A. Shifler and David G. Enos 15.1 Introduction 379 15.2 Corrosion Test Planning 379 15.3 Types of Corrosion Testing 381 15.3.1 Laboratory Testing 381 15.3.2 Salt Spray/Salt Fog Testing 383 15.3.2.1 Types of Salt Spray Environments 384 15.3.2.2 Limitations of Salt Spray Testing 385 15.3.3 Mixed Flowing Gas (MFG) Exposure Testing 386 15.3.4 Immersion Testing 389 15.3.5 Electrochemical Testing 393 15.3.5.1 Direct Current Electrochemical Methods 393 15.3.5.2 Nondestructive Electrochemical Methods 396 15.3.6 High Velocity Flow Testing 397 15.3.7 Environmental Cracking Test Methods 398 15.3.8 High Temperature Testing – Burner-Rigs 401 15.3.9 Molten Salt Tests 401 15.3.9.1 Thermogravimetric Analysis 402 15.3.10 Microbiological Tests 403 15.4 Field Evaluation 405 15.4.1 In-Service Testing 408 15.4.1.1 Simulated Service Testing 410 15.4.2 Standards for Seawater Testing 410 References 412 16 Nonmetallic Materials in Marine Service 421 Wayne Tucker 16.1 Introduction 421 16.2 Selection and Application 422 16.2.1 Material Definitions 422 16.2.2 Resistance to Environmental Factors 423 16.2.3 Mechanical and Physical Properties 423 16.3 Wood 424 16.3.1 Introduction 424 16.3.2 Degrading Factors 424 16.4 Plywood and Other Wood Composites 427 16.5 Concrete 428 16.5.1 Introduction 428 16.5.2 Marine Environmental Effects 429 16.5.3 Protection of Reinforced Concrete 430 16.5.4 Epoxy Coated Rebars (ECR) 431 16.5.5 Fiber Reinforced Concrete (FRC) 432 16.5.6 Repairs 432 16.6 Polymers 433 16.6.1 Fiber Reinforced Plastics (FRPs) 433 16.6.2 Environmental Effects 435 16.6.3 Fatigue of Marine Composites 436 16.6.4 Microbial Degradation 436 16.6.5 Ceramics and Glass 436 References 437 17 Electronics and Electrical Equipment in a Marine Environment 441 James A. Ellor 17.1 Introduction 441 17.2 Primary Corrosion Phenomena in a Marine Environment 442 17.2.1 Types of Corrosion 444 17.2.1.1 Galvanic Corrosion 444 17.2.1.2 Electrolytic Corrosion 445 17.2.1.3 Electrochemical Migration 445 17.3 Protection from the Environment 446 17.3.1 Conformal Coatings 446 17.3.2 Enclosures 447 17.3.3 Hermetic Seals 448 17.3.4 Dehumidification 448 17.3.5 Corrosion Inhibitors 449 17.3.6 Water-Displacing Compounds 449 17.4 Corrosion Testing for Electronics in a Marine Environment 449 17.5 Conclusions 450 References 451 18 Structural Alloys in Marine Service 453 David A. Shifler 18.1 Cast Irons 453 18.1.1 Cast Iron Metallurgy 454 18.1.2 Cast Iron Corrosion Behavior 457 18.2 Carbon Steels 458 18.2.1 Carbon Steel Chemistries 460 18.2.1.1 Effects of Alloying Additions 460 18.2.2 Surface Oxides/Corrosion Products 463 18.2.3 Heat Treating 464 18.2.4 Marine Steels 468 18.3 Stainless Steels 473 18.3.1 Stainless Steel Types 474 18.3.1.1 Austenitic Stainless Steels 474 18.3.1.2 Ferritic Stainless Steels 475 18.3.1.3 Martensitic Stainless Steels 478 18.3.1.4 Duplex Stainless Steels 478 18.3.1.5 Precipitation-Hardening Stainless Steels 479 18.3.2 Corrosion Behavior of Stainless Steels 479 18.3.3 Marine Uses of Stainless Steels 481 18.4 Nickel and Nickel Alloys 481 18.4.1 Corrosion Resistant Nickel and Nickel Alloys 483 18.4.2 High-temperature Nickel Alloys – Superalloys 486 18.5 Aluminum and Aluminum Alloys 490 18.5.1 Aluminum Alloy Familites 490 18.5.2 Heat Treatment of Aluminum Alloys 494 18.5.3 Corrosion Behavior of Aluminum Alloys 496 18.6 Copper and Copper Alloys 497 18.6.1 General Corrosion and Mechanical Properties 497 18.6.2 Bronze Alloys 498 18.6.3 Brasses 502 18.6.4 Copper–Nickel Alloys 503 18.7 Titanium and Titanium Alloys 506 18.7.1 Chemistry and Metallurgy of Titanium Alloys 507 18.7.2 General Corrosion Behavior 510 18.8 Factors Affecting Alloy Corrosion Behavior in Marine Service 510 18.8.1 Surface Properties and Processes 510 18.8.1.1 Passivity 510 18.8.2 Material Bulk Properties 513 18.8.3 Joining Effects on Materials 514 18.8.4 Cathodic Protection 518 References 518 Additional Reading and References 525 19 Marine Coatings 527 Charles G. Munger, Louis Vincent, and David A. Shifler 19.1 Introduction 527 19.2 Characteristics of a Ideal Marine Coating 528 19.3 Coating Degradation and Failures 532 19.4 Surface Preparation 532 19.5 Coating Inspection, Selection, and Application for Controlling Corrosion 536 19.6 Coatings for Marine Service 539 19.6.1 Metallized Coatings 539 19.6.1.1 Metal-Containing Primers 542 19.6.1.2 Cadmium Plating 543 19.6.1.3 Cadmium Options 543 19.6.2 Organic Coatings 544 19.6.2.1 Coating Thickness Measurements 544 19.7 Types of Coatings for Marine Vessels 545 19.7.1 Conversion Coatings 547 19.7.1.1 Hexavalent Chromate Conversion Coatings 547 19.7.1.2 Hexavalent Chromate Alternatives 547 19.7.1.3 Phosphate Coatings 548 19.7.2 Organic Coatings and Nanocomposites 548 19.7.3 Shop Primers 549 19.7.4 Universal Primers 550 19.7.5 Zinc-Rich Coatings 550 19.7.6 Organic Primers 551 19.7.7 Tie-Coats 552 19.7.8 Abrasion Resistant Coatings 552 19.7.9 Cargo Tank Linings 553 19.7.9.1 Tank Lining Chemical Resistance 554 19.7.10 Bilge Coatings 554 19.7.11 Ballast Tank Linings 555 19.7.12 Cofferdam and Void Coatings 558 19.7.13 Potable Water Tank Linings 558 19.7.14 Cosmetic Finishes – Topside Area and Interior Living and Working Spaces 559 19.7.15 Deck Coatings – Including Heli-Deck Surfaces 560 19.7.16 Hull Coatings – Freeboard Area 562 19.7.17 Maintenance Painting Programs 563 19.8 Offshore Structures 563 References 565 20 Biofouling Control 573 David A. Shifler 20.1 The Nature of Biofouling 573 20.2 Fouling Effects on Ships 574 20.2.1 Control of Biofouling 576 20.2.1.1 Biocidal Antifoulant Coatings 576 20.3 Non-biocidal Antifoulant Methods and Coatings 579 20.4 Maintenance, Monitoring, and Testing 582 References 587 21 Cathodic Protection 593 James A. Ellor, David A. Shifler, and Robert A. Bardsley 21.1 Theory 593 21.2 Reference Cells 596 21.3 Methods of Applying Cathodic Protection 597 21.3.1 Cathodic Protection Using Sacrificial Anodes 597 21.3.2 Impressed Current Cathodic Protection (ICCP) 600 21.3.2.1 Impressed Current Anodes Materials 601 21.3.2.2 Sacrificial Anodes 602 21.3.2.3 Impressed Current Cathodic Protection 604 21.4 Design Basics 604 21.4.1 Calcareous Deposits and Impacts on Protection Criteria 605 21.4.2 Polarization Characteristics Over Time 607 21.4.3 Design Using Physical Scale Modeling 608 21.4.4 Computer-Assisted Design 609 21.4.5 Protective (Dielectric) Shields 609 21.4.6 Protection Current Requirements 610 21.4.7 Polarization Potential Criteria of Protection 611 21.4.8 Automated Control Systems 611 21.5 Cathodic Protection in Marine Service 612 21.5.1 Small Boats and Large Commercial and Marine Vessels 612 21.5.2 Offshore Structures 615 21.5.3 Bridges, Wharves, and Jetties 617 21.5.4 Marine Pipelines 621 21.6 Concerns with the Use of Cathodic Protection 623 21.6.1 Corrosion/Cathodic Protection Monitoring 624 References 626 22 Corrosion Monitoring in Seawater 633 Sean Brossia 22.1 Introduction 633 22.2 Electrochemical Methods 634 22.2.1 Linear Polarization Resistance 634 22.2.2 Potential Measurements 636 22.2.3 Electrochemical Impedance Spectroscopy 637 22.2.4 Electrochemical Noise 641 22.2.5 Electrochemical Frequency Modulation 641 22.2.6 Wirebeam/Multielectrode Array Methods 641 22.3 Non-Electrochemical Methods 644 22.4 Challenges 647 22.5 Applications 648 22.6 Summary and Conclusions 649 References 650 23 Marine Fasteners 653 David A. Shifler 23.1 Introduction 653 23.2 Failure Modes 654 23.3 General Fastener Design 655 23.4 Fastener Materials Selection 656 23.4.1 Standards and Specifications 656 23.4.2 Low-Alloy Steels 659 23.4.3 Stainless Steels 659 23.4.4 Aluminum Alloys 659 23.4.5 Copper Alloys 660 23.4.6 Nickel Alloys 660 23.4.7 Titanium Alloys 660 23.5 Fastener Behavior Above the Waterline 661 23.6 Fastener Behavior in Submerged, Below the Waterline 661 23.7 Corrosion Protection for Fasteners 662 References 663 Further Reading 666 24 Marine and Offshore Piping Systems 667 David A. Shifler 24.1 Piping Systems 667 24.1.1 Bilge System 667 24.1.2 Ballast System 667 24.1.3 Firefighting Systems 668 24.1.4 Drainage Systems 668 24.1.5 Fresh-Water Systems 668 24.1.6 Fuel and Flammable Liquid Piping 668 24.1.7 Ventilation Systems – Ships 669 24.1.8 Hydrocarbon Piping (Oil and Gas) 669 24.1.9 Vent System – Offshore 669 24.1.10 Flare System 669 24.1.11 Firewater Utility Piping 669 24.1.12 Risers 670 24.1.13 Subsea Piping 670 24.2 Piping System Design 671 24.3 Materials Selection 672 24.4 Failure Modes of Piping Systems 674 24.4.1 Uniform Corrosion 674 24.4.2 Pitting and Crevice Corrosion 675 24.4.3 Galvanic Corrosion 677 24.4.4 Abrasion 681 24.4.5 Erosion and Erosion Corrosion 681 24.4.6 Variable Temperature Swings 684 24.4.7 Wear and Impact 684 24.4.8 Fatigue 685 24.4.9 Water Hammer 685 24.5 Corrosion Control Methods 686 References 686 Further Reading 689 25 Corrosion Control and Preservation of Historic Marine Artifacts 691 David A. Shifler 25.1 Introduction 691 25.2 Basic Conservation Procedures 694 25.2.1 Laboratory Conservation Procedures 695 25.3 Degradation, Corrosion, and Conservation of Marine Artifacts 695 25.3.1 Corrosion and Conservation of Ferrous Alloys 696 25.3.2 Corrosion and Conservation of Other Metals and Alloys 700 25.3.2.1 Corrosion and Conservation of Copper Artifacts 701 25.3.2.2 Corrosion and Conservation of Silver Artifacts 701 25.3.3 Corrosion and Conservation of Lead, Tin, Pewter 702 References 703 Further Reading 705 Marine Archaeology Conservation 705 Index 707

David A. Shifler, Office of Naval Research, Naval Materials Division, U.S. Department of the Navy, USA. Dr Shifler has over 35 years of work experience as a materials and corrosion engineer and has published extensively on corrosion and performance of materials in corrosive environments. He is a Certified Corrosion Specialist with NACE International and a Fellow of the UK Institute of Corrosion, NACE International, ASM International, and the Washington Academy of Sciences.

See Also