Manuel Ritoré is professor of Mathematics at the University of Granada since 2007. His earlier research focused on geometric inequalities in Riemannian manifolds, specially on those of isoperimetric type. In this field he has obtained some results such as a classification of isoperimetric sets in the 3-dimensional real projective space; a classification of 3-dimensional double bubbles; existence of solutions of the Allen-Cahn equation near non-degenerate minimal surfaces; an alternative proof of the isoperimetric conjecture for 3-dimensional Cartan-Hadamard manifolds; optimal isoperimetric inequalities outside convex sets in the Euclidean space; and a characterization of isoperimetric regions of large volume in Riemannian cylinders, among others. Recently, he has become interested on geometric variational problems in spaces with less regularity, such as sub-Riemannian manifolds or more general metric measure spaces, where he has obtained a classification of isoperimetric sets inthe first Heisenberg group under regularity assumptions, and Brunn-Minkowski inequalities for metric measure spaces, among others.
“The book presents well-written proofs, with detailed explanations, ensuring that they are both complete and accessible, and the clear writing style makes it a pleasure to read. All these qualities make it a must-read for anyone interested in isoperimetric inequalities.” (Giorgio Saracco, zbMATH 1557.53002, 2025)