Abbey's Bookshop Logo
Go to my checkout basket
Login to Abbey's Bookshop
Register with Abbey's Bookshop
Gift Vouchers
Browse by Category

Google Book Preview
Introduction to Machine Learning and Bioinformatics
— —
Sushmita Mitra Sujay Datta
Introduction to Machine Learning and Bioinformatics by Sushmita Mitra at Abbey's Bookshop,

Introduction to Machine Learning and Bioinformatics

Sushmita Mitra Sujay Datta Theodore Perkins George Michailidis


CRC Press

Biology, life sciences;
Machine learning


384 pages

We can order this in for you
How long will it take?
order qty:  
Add this item to my basket

Lucidly Integrates Current Activities Focusing on both fundamentals and recent advances, Introduction to Machine Learning and Bioinformatics presents an informative and accessible account of the ways in which these two increasingly intertwined areas relate to each other.

Examines Connections between Machine Learning & Bioinformatics The book begins with a brief historical overview of the technological developments in biology. It then describes the main problems in bioinformatics and the fundamental concepts and algorithms of machine learning. After forming this foundation, the authors explore how machine learning techniques apply to bioinformatics problems, such as electron density map interpretation, biclustering, DNA sequence analysis, and tumor classification. They also include exercises at the end of some chapters and offer supplementary materials on their website.

Explores How Machine Learning Techniques Can Help Solve Bioinformatics Problems Shedding light on aspects of both machine learning and bioinformatics, this text shows how the innovative tools and techniques of machine learning help extract knowledge from the deluge of information produced by today's biological experiments.

By:   Sushmita Mitra, Sujay Datta, Theodore Perkins, George Michailidis
Imprint:   CRC Press
Country of Publication:   United Kingdom
Dimensions:   Height: 234mm,  Width: 156mm, 
Weight:   1.560kg
ISBN:   9780367387235
ISBN 10:   0367387239
Pages:   384
Publication Date:   August 2019
Audience:   College/higher education ,  Primary
Format:   Paperback
Publisher's Status:   Active

Introduction. The Biology of a Living Organism. Probabilistic and Model-Based Learning. Classification Techniques. Unsupervised Learning Techniques. Computational Intelligence in Bioinformatics. Connections. Machine Learning in Structural Biology. Soft Computing in Biclustering. Bayesian Methods for Tumor Classification. Modeling and Analysis of iTRAQ Data. Mass Spectrometry Classification. Index.

Mitra, Sushmita; Datta, Sujay; Perkins, Theodore; Michailidis, George

... The stated audience for this book is M.S. and Ph.D. students in bioinformatics, machine intelligence, applied statistics, biostatistics, computer science, and related areas. ... a well-written collection from multiple authors that I recommend for the intended audience. Several chapters include exercises. --Technometrics, November 2009, Vol. 51, No. 4 ...a good text/reference book that summarizes the latest developments in the interface between bioinformatics and machine learning and offer[s] a thorough introduction to each field. ... One of the strengths of this book is the clear notation with a mathematical and statistical flavor, which will be attractive to Biometrics readers, especially to those new to statistical learning and data mining. It is also very readable for a variety of interested learners, researchers, and audiences from various backgrounds and disciplines. ... --Biometrics, March 2009 ... a well-structured book that is a good starting point for machine learning in bioinformatics. ... Using many popular examples, the statistical theory becomes comprehensible and bioinformatics examples motivate [readers] to apply the concepts to real data. --Markus Schmidberger, Journal of Statistical Software, November 2008

My Shopping Basket
Your cart does not contain any items.