LOW FLAT RATE $9.90 AUST-WIDE DELIVERY

Close Notification

Your cart does not contain any items

How to Read and Do Proofs

An Introduction to Mathematical Thought Processes

Daniel Solow (Case Western Reserve University, Ohio)

$219.95

Paperback

Not in-store but you can order this
How long will it take?

QTY:

English
John Wiley & Sons Inc
03 September 2013
This text makes a great supplement and provides a systematic approach for teaching undergraduate and graduate students how to read, understand, think about, and do proofs. The approach is to categorize, identify, and explain (at the student's level) the various techniques that are used repeatedly in all proofs, regardless of the subject in which the proofs arise. How to Read and Do Proofs also explains when each technique is likely to be used, based on certain key words that appear in the problem under consideration. Doing so enables students to choose a technique consciously, based on the form of the problem.
By:  
Imprint:   John Wiley & Sons Inc
Country of Publication:   United States
Edition:   6th edition
Dimensions:   Height: 224mm,  Width: 152mm,  Spine: 18mm
Weight:   408g
ISBN:   9781118164020
ISBN 10:   1118164024
Pages:   336
Publication Date:  
Audience:   Professional and scholarly ,  Undergraduate
Format:   Paperback
Publisher's Status:   Active
Foreword xi Preface to the Student xiii Preface to the Instructor xv Acknowledgments xviii Part I Proofs 1 Chapter 1: The Truth of It All 1 2 The Forward-Backward Method 9 3 On Definitions and Mathematical Terminology 25 4 Quantifiers I: The Construction Method 41 5 Quantifiers II: The Choose Method 53 6 Quantifiers III: Specialization 69 7 Quantifiers IV: Nested Quantifiers 81 8 Nots of Nots Lead to Knots 93 9 The Contradiction Method 101 10 The Contrapositive Method 115 11 The Uniqueness Methods 125 12 Induction 133 13 The Either/Or Methods 145 14 The Max/Min Methods 155 15 Summary 163 Part II Other Mathematical Thinking Processes 16 Generalization 179 17 Creating Mathematical Definitions 197 18 Axiomatic Systems 219 Appendix A Examples of Proofs from Discrete Mathematics 237 Appendix B Examples of Proofs from Linear Algebra 251 Appendix C Examples of Proofs from Modern Algebra 269 Appendix D Examples of Proofs from Real Analysis 287 Solutions to Selected Exercises 305 Glossary 357 References 367 Index 369 

Daniel Solow is a professor of management for the Weatherhead School of Management at Case Western Reserve University. His research interests include developing and analyzing optimization models for studying complex adaptive systems, and basic research in deterministic optimization, including combinatorial optimization, linear and nonlinear programming. He has published over 20 papers on both topics.

Reviews for How to Read and Do Proofs: An Introduction to Mathematical Thought Processes

"""The instructional material is to the point, with well-considered examples and asides on common mistakes. Good examples of the author's thoughtfulness appear in the discourses on pp. 5-6 of identifying the hypothesis and conclusion when they are not obvious, on pp. 28-29 regarding overlapping notation, and on pp. 190-191 of the advantages and disadvantages of generalization."" (Zentralblatt MATH 2016)"


See Also