LOW FLAT RATE $9.90 AUST-WIDE DELIVERY

Close Notification

Your cart does not contain any items

Hardy Spaces on the Euclidean Space

Akihito Uchiyama Peter W. Jones

$227.95   $182.26

Hardback

Not in-store but you can order this
How long will it take?

QTY:

English
Springer Verlag
01 June 2001
Still waters run deep.
By:  
Preface by:  
Imprint:   Springer Verlag
Country of Publication:   Japan
Dimensions:   Height: 235mm,  Width: 155mm,  Spine: 19mm
Weight:   647g
ISBN:   9784431703198
ISBN 10:   4431703195
Series:   Springer Monographs in Mathematics
Pages:   318
Publication Date:  
Audience:   College/higher education ,  Professional and scholarly ,  Professional & Vocational ,  A / AS level ,  Further / Higher Education
Format:   Hardback
Publisher's Status:   Active
0. Introduction.- 1. Lipschitz spaces and BMO.- 2. Atomic Hp spaces.- 3. Operators on Hp.- 4. Atomic decomposition from grand maximal functions.- 5. Atomic decomposition from S functions.- 6. Hardy-Littlewood-Fefferman-Stein type inequalities, 1.- 7. Hardy-Littlewood-Fefferman-Stein type inequalities, 2.- 8*Hardy-Littlewood-Fefferman-Stein type inequalities, 3.- 9. Grand maximal functions from radial maximal functions.- 10* S-functions from g-functions.- 11. Good ? inequalities for nontangential maximal functions and S-functions of harmonic functions.- 14. Subharmonicity, 1.- 15. Subharmonicity, 2.- 16. Preliminaries for characterizations of Hp in terms of Fourier multipliers.- 17. Characterization of Hp in terms of Riesz transforms.- 18. Other results on the characterization of Hp in terms of Fourier multipliers.- 19. Fefferman’s original proof of.- 20. Varopoulos’s proof of the above inequality.- 21. The Fefferman-Stein decomposition of BMO.- 22. A constructive proof of the Fefferman-Stein decomposition of BMO.- 23. Vector-valued unimodular BMO functions.- 24. Extension of the Fefferman-Stein decomposition of BMO, 1.- 25. Characterization of H1 in terms of Fourier multipliers.- 26. Extension of the Fefferman-Stein decomposition of BMO, 2.- 27. Characterization of Hp in terms of Fourier multipliers.- 28. The one-dimensional case.- References.

See Also