MOTHER'S DAY SPECIALS! SHOW ME MORE

Close Notification

Your cart does not contain any items

Die Erforschung des Chaos

Eine Einführung für Naturwissenschaftler und Ingenieure

John H. Argyris Gunter Faust Maria Haase

$123.95   $98.90

Paperback

Not in-store but you can order this
How long will it take?

QTY:

German
Springer-Verlag
01 August 2012
Das Buch stellt die grundlegenden Konzepte der Chaos-Theorie und die mathematischen Hilfsmittel so elementar wie möglich dar.
By:   , ,
Imprint:   Springer-Verlag
Country of Publication:   Germany
Edition:   Softcover reprint of the original 1st ed. 1994
Dimensions:   Height: 244mm,  Width: 170mm,  Spine: 41mm
Weight:   1.380kg
ISBN:   9783322904423
ISBN 10:   3322904423
Pages:   790
Publication Date:  
Audience:   Professional and scholarly ,  Undergraduate
Format:   Paperback
Publisher's Status:   Active
1 Einführung.- 2 Hintergrund und Motivation.- 2.1 Kausalität — Determinismus.- 2.2 Dynamische Systeme — Beispiele.- 2.3 Phasenraum.- 2.4 Erste Integrale und Mannigfaltigkeiten.- 2.5 Qualitative und quantitative Betrachtungsweise.- 3 Mathematische Einführung in dynamische Systeme.- 3.1 Lineare autonome Systeme.- 3.2 Nichtlineare Systeme und Stabilität.- 3.3 Invariante Mannigfaltigkeiten.- 3.4 Diskretisierung in der Zeit.- 3.5 Poincaré-Abbildung.- 3.6 Fixpunkte und Zyklen diskreter Systeme.- 3.7 Ein Beispiel diskreter Dynamik — die logistische Abbildung.- 4 Dynamische Systeme ohne Dissipation.- 4.1 Hamiltonsche Gleichungen.- 4.2 Kanonische Transformationen, Integrierbarkeit.- 4.3 f-dimensionale Ringe (Tori) und Trajektorien.- 4.4 Die Grundzüge der KAM-Theorie.- 4.5 Instabile Tori, chaotische Bereiche.- 4.6 Ein numerisches Beispiel: die Hénon-Abbildung.- 5 Dynamische Systeme mit Dissipation.- 5.1 Volumenkontraktion — eine wesentliche Eigenschaft dissipativer Systeme.- 5.2 Seltsamer Attraktor: Lorenz-Attraktor.- 5.3 Leistungsspektrum und Autokorrelation.- 5.4 Lyapunov-Exponenten.- 5.5 Dimensionen.- 5.6 Kolmogorov-Sinai-Entropie.- 6 Lokale Bifurkationstheorie.- 6.1 Motivation.- 6.2 Zentrumsmannigfaltigkeit.- 6.3 Normalformen.- 6.4 Normalformen von Verzweigungen einparametriger Flüsse.- 6.5 Stabilität von Verzweigungen infolge Störungen.- 6.6 Verzweigungen von Fixpunkten einparametriger Abbildungen.- 6.7 Renormierung und Selbstähnlichkeit am Beispiel der logistischen Abbildung.- 6.8 Ein beschreibender Exkurs in die Synergetik.- 7 Konvektionsströmungen: Bénard-Problem.- 7.1 Hydrodynamische Grundgleichungen.- 7.2 Boussinesq-Oberbeck-Approximation.- 7.3 Lorenz-Modell.- 7.4 Entwicklung des Lorenz-Systems.- 8 Wege zur Turbulenz.- 8.1 Landau-Szenario.- 8.2Ruelle-Takens-Szenario.- 8.3 Universelle Eigenschaften des Übergangs von Quasiperiodizität zu Chaos.- 8.4 Die Feigenbaum-Route über Periodenverdopplungen ins Chaos...- 8.5 Quasiperiodischer Übergang bei fester Windungszahl.- 8.6 Der Weg über Intermittenz ins Chaos.- 8.7 Wege aus dem Chaos, Steuerung des Chaos.- 9 Computerexperimente.- 9.1 Einblick in Knochenumbauprozesse.- 9.2 Hénon-Abbildung.- 9.3 Wiederbegegnung mit dem Lorenz-System.- 9.4 Van der Polsche Gleichung.- 9.5 Duffing-Gleichung.- 9.6 Julia-Mengen und ihr Ordnungsprinzip.- 9.7 Struktur der Arnol’d-Zungen.- 9.8 Zur Kinetik chemischer Reaktionen an Einkristall-Oberflächen.- 9.9 Ein Überblick über chaotisches Verhalten in unserem Sonnensystem.- Farbtafeln.- Literatur.

Prof. em. Dr. Dr. h. c. mult. John Argyris ist Direktor des Instituts für Computer-Anwendungen an der Universität Stuttgart.

See Also