PERHAPS A GIFT VOUCHER FOR MUM?: MOTHER'S DAY

Close Notification

Your cart does not contain any items

Deflagration and Detonation Flame Arresters

Stanley S. Grossel (Process Safety and Design, Inc.)

$288.95

Hardback

Not in-store but you can order this
How long will it take?

QTY:

English
Wiley-AIChE
01 May 2002
Designed for chemical engineers and other technical personnel involved in the design, operation, and maintenance of facilities and equipment where deflagration and detonation flame arresters (DDFAs) may be required, this book fosters effective application and operation of DDFAs through treatment of their principles of operation, selection, installation, and maintenance methods. This reference covers a broad range of issues concerning DDAs, including:

An overview of deflagration and detonation prevention and protection practices An overview of combustion and flame propagation and how DDAs halt propagation Deflagration and detonation flame arrester technology Installation in process systems Regulations, codes, and standards Illustrative examples, calculations, and guidelines for DDA selection Appendices, including a glossary, a flame arrester specification sheet for vendor quotation, and a listing of flame arrester manufacturers.

By:  
Imprint:   Wiley-AIChE
Country of Publication:   United States
Dimensions:   Height: 234mm,  Width: 164mm,  Spine: 24mm
Weight:   499g
ISBN:   9780816907915
ISBN 10:   0816907919
Series:   A CCPS Concept Book
Pages:   232
Publication Date:  
Audience:   Professional and scholarly ,  Undergraduate
Format:   Hardback
Publisher's Status:   Active
Preface. Acknowledgments. Acronyms and Abbreviations. 1. Introduction. 1.1 Intended Audience. 1.2 Why This Book Was Written. 1.3 What Is Covered in This Book. 1.4 What the Reader Should Learn From This Book. 1.5 Units of Measure. 2. History and State-of-the Art. 2.1 Historical Development of Flame Arresters. 2.2 Case Histories of Successful and Unsuccessful Applications of Flame Arresters. 2.2.1 Successful Applications. 2.2.2 Unsuccessful Applications. 2.3 Evolution of Standards and Codes. 2.3.1 United States. 2.3.2 Canada. 2.3.3 United Kingdom. 2.3.4 Europe and International. 2.4 Safety Concerns and Environmental Regulations: Tradeoffs and Conflicts. 2.5 References. 3. Overview of Deflagration and Detonation Prevention and Protection Practices. 3.1 Introduction. 3.2 Deflagration and Detonation Flame Arresters. 3.3 Deflagration Venting. 3.4 Oxidant Concentration Reduction. 3.5 Combustible Concentration Reduction. 3.6 Deflagration Suppression. 3.7 Deflagration Pressure Containment. 3.8 Equipment and Piping Isolation. 3.9 References. 4. Overview of Combustion and Flame Propagation Phenomena Related to DDAs. 4.1 Introduction to the Chemistry and Physics of Flame Propagation. 4.1.1 Combustion Chemistry and Thermodynamics. 4.1.2 Flammability Characteristics. 4.1.3 Decomposition Flames. 4.2 Dynamic of Flame Propagation. 4.2.1 Burning Velocity and Flame Speed. 4.2.2 Flame Acceleration and Deflagration-to-Detonation Transition (DDT). 4.2.3 Detonations. 4.3 Ignition and Quenching. 4.4 Theoretical Basis for Flame Arrester Design and Operation. 4.5 References. 5. Deflagration and Detonation Flame Arrester Technology. 5.1 Where Flame Arresters May Be Needed. 5.2 Types of Flame Arresters. 5.2.1 Introduction. 5.2.2 Crimped Metal Ribbon. 5.2.3 Parallel Plate. 5.2.4 Expanded Metal Cartridge. 5.2.5 Perforated Plate. 5.2.6 Wire Gauze. 5.2.7 Sintered Metal. 5.2.8 Ceramic Balls. 5.2.9 Metal Shot. 5.2.10 Hydraulic (Liquid Seal) Flame Arrester. 5.2.11 Packed Bed Flame Arrester. 5.2.12 Velocity Flame Stopper. 5.2.13 High Velocity Vent Valve. 5.2.14 Conservation Vent Valves as Flame Arresters. 5.3 Selection and Design Criteria/Considerations. 5.3.1 Classification According to NEC Groups and MESGs. 5.3.2 Reactions and Combustion Dynamics of Fast-Burning Gases. 5.3.3 Flame Propagation Direction. 5.3.4 Quenching Diameter, Quenching Length, and Flame Velocity. 5.3.5 Burnback Resistance. 5.3.6 Pressure Drop Limitations. 5.3.7 Fouling and Plugging Potential and Protection. 5.3.8 Unwanted Phases. 5.3.9 Material Selection Requirements. 5.3.10 Special Design Options. 5.3.11 System Constraints. 5.3.12 Mixture Composition. 5.3.13 Operating Temperature and Pressure. 5.3.14 Ignition Location. 5.3.15 Changes in Pipe Diameter. 5.3.16 Location and Orientation. 5.3.17 Reliability. 5.3.18 Monitoring and Instrumentation. 5.3.19 Inspection and Maintenance Requirements. 5.4 Special Applications. 5.4.1 Hydrogen. 5.4.2 Acetylene. 5.4.3 Ethylene Oxide. 5.5 Information  That Should Be Provided to Manufacturers. 5.6 References. 6. Installation in Process Systems. 6.1 Design Considerations with Respect to Other System Components. 6.2 Piping and Flame Arrester System Design Considerations. 6.3 Maintaining Reliability. 6.4 Optimum Location in System. 6.5 Supports for Static and Dynamic Forces. 6.6 References. 7. Inspection and Maintenance of Flame Arresters. 7.1 Need and Importance of Maintenance. 7.2 Mechanical Integrity Issues. 7.2.1 Inspection. 7.2.2 Current Maintenance Practices. 7.2.3 Documentation and Verification of Flame Arrester Maintenance. 7.3 Training and Competence Issues for Operating and Maintenance Personnel. 7.4 On-Stream Isolation and Switching of Parallel Spares. 7.5 Check List for Inspection. 7.6 References. 8. Regulations, Codes, and Standards. 8.1 Regulations, Codes, and Standards Summaries. 8.1.1 United States. 8.1.2 Canada. 8.1.3 United Kingdom. 8.1.4 Europe and International. 8.2 Comparison of Various Flame Arrester Standards and Codes. 8.3 Standards and Codes in Preparation. 8.4 References. 9. Illustrative Examples, Calculations, and Guidelines for DDA Selection. 9.1 Introduction. 9.2 Example 1-Protective Measures for a Vent Manifold System. 9.3 Example 2-Sizing of an End-of-Line Deflagration Flame Arrester. 9.4 Example 3-Calculation of Limiting Oxidant Concentration (LOC). 9.5 Example 4-Calculation of the LFL and UFL of Mixtures. 9.6 Example 5-Calculation of the MESG of Mixtures. 9.7 Determination If a DDT Can Occur. 9.8 Typical Locations in Process Systems. 9.9 List of Steps in the Selection of a DDA or Other Flame Propagation Control Method. 9.10 References. 10. Summary. 10.1 Status of DDA Technology. 10.2 Recommended Practices. 10.3 Why Flame Arresters Fail. 10.4 Future Technology Development. 10.5 References. Appendix A. Flame Arrester Specification Sheet for Manufacturer Quotation. Appendix B. List of Flame Arrester Manufacturers. Appendix C. UL and FM Listings and Approvals. Appendix D. Suggested Additional Reading. Glossary. Index.

Stanley S. Grossel is the author of Deflagration and Detonation Flame Arresters, published by Wiley.

See Also