Close Notification

Your cart does not contain any items

Artificial Intelligence: With an Introduction to Machine Learning, Second Edition

Richard E. Neapolitan Xia Jiang



We can order this in for you
How long will it take?


CRC Press
16 May 2018
Artificial intelligence
The first edition of this popular textbook, Contemporary Artificial Intelligence, provided an accessible and student friendly introduction to AI. This fully revised and expanded update, Artificial Intelligence: With an Introduction to Machine Learning, Second Edition, retains the same accessibility and problem-solving approach, while providing new material and methods.

The book is divided into five sections that focus on the most useful techniques that have emerged from AI. The first section of the book covers logic-based methods, while the second section focuses on probability-based methods. Emergent intelligence is featured in the third section and explores evolutionary computation and methods based on swarm intelligence. The newest section comes next and provides a detailed overview of neural networks and deep learning. The final section of the book focuses on natural language understanding.

Suitable for undergraduate and beginning graduate students, this class-tested textbook provides students and other readers with key AI methods and algorithms for solving challenging problems involving systems that behave intelligently in specialized domains such as medical and software diagnostics, financial decision making, speech and text recognition, genetic analysis, and more.
By:   Richard E. Neapolitan, Xia Jiang
Imprint:   CRC Press
Country of Publication:   United Kingdom
Edition:   2nd New edition
Dimensions:   Height: 254mm,  Width: 178mm, 
Weight:   1.030kg
ISBN:   9781138502383
ISBN 10:   1138502383
Series:   Chapman & Hall/CRC Artificial Intelligence and Robotics Series
Pages:   466
Publication Date:   16 May 2018
Audience:   College/higher education ,  Primary
Format:   Hardback
Publisher's Status:   Active
1. Introduction to Artificial Intelligence 1.1 History of Artificial Intelligence 1.2 Outline of this Book Part I LOGICAL INTELLIGENCE 2. Propositional Logic 2.1 Basics of Propositional Logic 2.2 Resolution 2.3 Artificial Intelligence Applications 2.4 Discussion and Further Reading 3. First-Order Logic 3.1 Basics of First-Order Logic 3.2 Artificial Intelligence Applications 3.3 Discussion and Further Reading 4. Certain Knowledge Representation 4.1 Taxonomic Knowledge 4.2 Frames 4.3 Nonmonotonic Logic 4.4 Discussion and Further Reading 5. Learning Deterministic Models 5.1 Supervised Learning 5.2 Regression 5.3 Parameter Estimation 5.4 Learning a Decision Tree PART II PROBABILISTIC INTELLIGENCE 6. Probability 6.1 Probability Basics 6.2 RandomVariables 6.3 Meaning of Probability 6.4 RandomVariables in Applications 6.5 Probability in the Wumpus World 7. Uncertain Knowledge Representation 7.1 Intuitive Introduction to Bayesian Networks 7.2 Properties of Bayesian Networks 7.3 Causal Networks as Bayesian Networks 7.4 Inference in Bayesian Networks 7.5 Networks with Continuous Variables 7.6 Obtaining the Probabilities 7.7 Large-Scale Application: Promedas 8. Advanced Properties of Bayesian Network 8.1 Entailed Conditional Independencies 8.2 Faithfulness 8.3 Markov Equivalence 8.4 Markov Blankets and Boundaries 9. Decision Analysis 9.1 Decision Trees 9.2 Influence Diagrams 9.3 Modeling Risk Preferences 9.4 Analyzing Risk Directly 9.5 Good Decision versus Good Outcome 9.6 Sensitivity Analysis 9.7 Value of Information 9.8 Discussion and Further Reading 10. Learning Probabilistic Model Parameters 10.1 Learning a Single Parameter 10.2 Learning Parameters in a Bayesian Network . 10.3 Learning Parameters with Missing Data 11. Learning Probabilistic Model Structure 11.1 Structure Learning Problem 11.2 Score-Based Structure Learning 11.3 Constraint-Based Structure Learning 11.4 Application: MENTOR 11.5 Software Packages for Learning 11.6 Causal Learning 11.7 Class Probability Trees 11.8 Discussion and Further Reading 12. Unsupervised Learning and Reinforcement Learning 12.1 Unsupervised Learning 12.2 Reinforcement Learning 12.3 Discussion and Further Reading PART III EMERGENT INTELLIGENCE 13. Evolutionary Computation 13.1 Genetics Review 13.2 Genetic Algorithms 13.3 Genetic Programming 13.4 Discussion and Further Reading 14. Swarm Intelligence 14.1 Ant System 14.2 Flocks 14.3 Discussion and Further Reading PART IV NEURAL INTELLIGENCE 15. Neural Networks and Deep Learning 15.1 The Perceptron 15.2 Feedforward Neural Networks 15.3 Activation Functions 15.4 Application to Image Recognition 15.5 Discussion and Further Reading PART V LANGUAGE UNDERSTANDING 16. Natural Language Understanding 16.1 Parsing 16.2 Semantic Interpretation 16.3 Concept/Knowledge Interpretation 16.4 Information Extraction 16.5 Discussion and Further Reading

Richard E. Neapolitan is professor emeritus of computer science at Northeastern Illinois University and a former professor of bioinformatics at Northwestern University. He is currently president of Bayesian Network Solutions. His research interests include probability and statistics, decision support systems, cognitive science, and applications of probabilistic modeling to fields such as medicine, biology, and finance. Dr. Neapolitan is a prolific author and has published in the most prestigious journals in the broad area of reasoning under uncertainty. He has previously written five books, including the seminal 1989 Bayesian network text Probabilistic Reasoning in Expert Systems; Learning Bayesian Networks (2004); Foundations of Algorithms (1996, 1998, 2003, 2010, 2015), which has been translated into three languages; Probabilistic Methods for Financial and Marketing Informatics (2007); and Probabilistic Methods for Bioinformatics (2009). His approach to textbook writing is distinct in that he introduces a concept or methodology with simple examples, and then provides the theoretical underpinning. As a result, his books have the reputation for making difficult material easy to understand without sacrificing scientific rigor. Xia Jiang is an associate professor in the Department of Biomedical Informatics at the University of Pittsburgh School of Medicine. She has over 16 years of teaching and research experience using artificial intelligence, machine learning, Bayesian networks, and causal learning to model and solve problems in biology, medicine, and translational science. Dr. Jiang pioneered the application of Bayesian networks and information theory to the task of learning causal interactions such as genetic epistasis from data, and she has conducted innovative research in the areas of cancer informatics, probabilistic medical decision support, and biosurveillance. She is the coauthor of the book Probabilistic Methods for Financial and Marketing Informatics (2007).

Reviews for Artificial Intelligence: With an Introduction to Machine Learning, Second Edition

At many universities courses on arti cial intelligence (AI) are offered, mainly for computer science students. This is very often a bit optimistic since this field also requires a sound mathematical background. Furthermore, there is now an increasing rumor about the problems, dangers etc. that may appear. In this field this textbook is an excellent contribution to avoid these discussions and make artificial intelligence more and more a practicable field! -Christian Postho, St. Augustine

See Also