PERHAPS A GIFT VOUCHER FOR MUM?: MOTHER'S DAY

Close Notification

Your cart does not contain any items

$458.95

Paperback

Not in-store but you can order this
How long will it take?

QTY:

English
Elsevier - Health Sciences Division
23 October 2023
Series: Metal Oxides
Complex and Composite Metal Oxides for Gas, VOC, and Humidity Sensors, Volume 1: Fundamentals and Approaches provides an overview of the advanced nanocomposite metal oxide materials and their uses as gas, VOCs and humidity sensors, which are widely applicable for environmental monitoring in various industries. The first of the two volumes, Fundamentals and Approaches introduces the ground rules essential for the development of smart gas, VOC, and humidity sensors. This volume familiarizes researchers with the different sensors (resistive, electrolyte, optical, etc.) fabricated using metal oxide hybrids and nanocomposites that employ various properties such as electrical, QCM and SAW, SPR, luminescence, and fiber optics. It is a key resource for materials scientists and engineers in academia and R&D as well as environmental scientists.

Edited by:   , , , , , , ,
Imprint:   Elsevier - Health Sciences Division
Country of Publication:   United States
Dimensions:   Height: 229mm,  Width: 152mm, 
Weight:   450g
ISBN:   9780323953856
ISBN 10:   0323953859
Series:   Metal Oxides
Pages:   442
Publication Date:  
Audience:   Professional and scholarly ,  Undergraduate
Format:   Paperback
Publisher's Status:   Active
PART 1 Metal oxide-based gas and humidity sensors: Fundamentals 1. Applications of gas and VOC sensors for industry and environmental monitoring: Current trends and future implications 2. Fundamentals of electrical gas sensors 3. Principles and methods of optical and fiber optic gas sensing 4. Why do we need humidity sensors? PART 2 Metal oxide-based hybrids and their gas sensing characteristics 5. Metal oxide-polymer composites for gas-sensing applications 6. Composites for gas sensors based on metal oxide and noble metals 7. Metal oxide gas sensors based on metal–organic frameworks (MOFs) PART 3 Other type of gas and VOC sensors based on metal oxide nanocomposites and hybrids 8. Complex metal oxide compounds and composites designed for high-temperature solid electrolyte-based oxygen, hydrogen gas sensors 9. QCM and SAW gas and VOC sensors based on metal oxide composites (principles, fabrication, sensing materials, and performances) PART 4 Metal oxide-based nanocomposites for optical sensing of gas and VOCs 10. Metal oxide nanocomposites for surface plasmon resonance based gas sensing 11. Functionalized metal oxide nanocomposites for fiber optic gas and vapor sensors 12. Metal oxide nanocomposites for gas and VOC sensors based on other optical methods PART 5 Humidity sensors based on metal oxide nanocomposites 13. Metal oxide-based nanocomposites designed for humidity sensor applications 14. Humidity sensors based on solid-state metal-oxide hybrids 15. Polymer/metal oxide composites and their humidity sensing characteristics

Dr. Bal Chandra Yadav works as Professor and Head in the Department of Physics, School of Physical and Decision Sciences at Babasaheb Bhimrao Ambedkar University based in Lucknow, India. He has more than 24 years of teaching and research experience. His areas of research includes the development of innovative nanomaterials for energy and sensing applications. Dr. Pragati Kumar is an Assistant Professor in the Department of Nanosciences and Materials at Central University of Jammu, India. He has more than 7 years of teaching and research experience. Dr. Kumar’s research interests include semiconductor and metal nanocrystals, thin films and composites for optoelectronic and sensing applications.

See Also