Being a Scientist is a comprehensive introduction to the many aspects of scientific life beyond the classroom and laboratory. Written with undergraduate science majors in mind, the book covers ethics, the philosophical bases of scientific methods, library research, reading, peer review, creativity, proposal and paper writing, and oral and poster presentations.
In contrast to other texts in the field, which often take a simple prescriptive approach to these topics, Being a Scientist connects them to the historical and philosophical roots of modern science, as well as the common experiences of all people.
Written in a conversational style, the book makes use of metaphor, historical anecdote, and hypothetical research about everyday household questions. This approach helps undergraduates learn basic research skills without being too intimidated by the advanced concepts, vocabulary, and methods which are encountered in looking at the current scientific literature.
Being a Scientist is a textbook for a semester-long course devoted to teaching research and communication skills to undergraduate science majors, but it can be adapted for use in summer research experiences, capstone research courses, and other courses throughout the undergraduate curriculum.
By:
Michael H. Schmidt
Imprint: University of Toronto Press
Country of Publication: Canada
Dimensions:
Height: 229mm,
Width: 154mm,
Spine: 17mm
Weight: 450g
ISBN: 9781487588441
ISBN 10: 1487588445
Pages: 320
Publication Date: 19 November 2019
Audience:
College/higher education
,
Professional and scholarly
,
Primary
,
Undergraduate
Format: Paperback
Publisher's Status: Active
"List of Figures and Tables Preface Introduction The Organization and Use of the Book To Instructors To Students Acknowledgments Part I: Thinking, and Behaving, Like a Good Scientist 1. What Does It Mean to Be a Scientist? 1.1 Why Become a Scientist? 1.2 Scientists Are Humans 1.3 Defining Science, and Scientists, More Precisely 1.4 Aristotle, Medieval Scholasticism, and Deduction 1.5 Francis Bacon and Induction 1.6 Hume and the Problems with Induction 1.7 William Whewell and Hypotheses 1.8 Dealing with Doubts about Induction: Popper 1.9 Holistic Views: Duhem, Kuhn, Latour, and Ziman 1.10 Is There a Conclusion? 2. What Should We Do, and Why? The Questions of Ethics 2.1 Why Study Ethics? 2.2 Systems of Ethics 2.3 Consequentialism and Utilitarianism 2.4 Social Contractarianism 2.5 Deontology 2.6 Virtue 2.7 Ethics of Care 2.8 Using Different Approaches to Ethics 2.9 Ethics in Practice 2.10 About Moral Courage 2.11 The Ethics of Science 2.12 The Importance of Honesty 2.13 The Ethos of Science 2.14 The Context of Science 2.15 Resources for Scientific Research 2.16 Ethical Conflicts Part II: Standing on the Shoulders of Giants 3. The Scientific Literature: An Overview of the Terrain, and a Brief Hike In 3.1 History, Metaphors, and Literature 3.2 Subramanyam’s Cycle 3.3 Approaching the Landscape 3.4 Kinds of Books 3.5 A Plan 3.6 Finding Books and Reference Works 4. Scientific Journals, Past and Present 4.1 The History of Scientific Literature 4.2 Did Modern Science Start with Gutenberg? 4.3 The Rise of Scientific Journals 4.4 The Evolution of the Scientific Journal and the Scientific Article: The Eighteenth to the Twentieth Centuries 4.5 What Can Be Found in Scientific Journals Today? 4.6 What about the Future? 4.7 Climbing into the Journal Literature 4.8 What’s in a Name? 5. Abstracts Collections and Databases 5.1 A Brief History of Abstracting and Indexing 5.2 Investigating Databases 5.3 Implementing a Search 6. Using Cited References: Backward and Forward 6.1 The Importance of Cited References 6.2 Looking Backward 6.3 The Limitations of Looking Backward, and the Need to Look Forward 7. Reading a Scientific Paper 7.1 Why Is It So Hard? 7.2 Hints for Taking a First Look at a Scientific Paper 7.3 Reading for Arguments 7.4 Local Arguments and Larger Arguments 7.5 Thinking beyond the Paper 8. Peer Review 8.1 Benefits and Limitations 8.2 Historical Background 8.3 Modern Peer Review in Practice 8.4 Some Problems with Peer Review, and Some Possible Solutions Part III: Planning, Documenting, and Presenting Science 9. Starting Research: A Different ""What Should We Do?"" Question 9.1 The Importance of Creativity 9.2 Divergent Thinking on a Big Scale 9.3 Divergent Thinking in a Narrower, More Advanced Context 9.4 Convergent Thinking 9.5 Visualization 9.6 Situating Your Research: The Scientific Literature 10. Refining Research Ideas and Writing a Proposal 10.1 From Ideas to a Proposal 10.2 Practical Quantitation 10.3 Using Quantitative Data 10.4 What about Statistics? 10.5 Anticipating Problems 10.6 Writing the Proposal 11. The Laboratory Notebook 11.1 The Evolution and Importance of the Laboratory Notebook 11.2 The Format of a Notebook Entry 11.3 The Laboratory Notebook in Real Life 11.4 Electronic Laboratory Notebooks 12. Scientific Writing: Grammar and Style 12.1 Tense and Voice 12.2 General Writing and Style Suggestions 12.3 A Quick Guide to Tense and Voice 13. Assembling and Writing a Scientific Paper 13.1 Some Perspective 13.2 Authorship 13.3 Starting with the Results 13.4 Distinguishing the Results and Discussion 13.5 Results, Selected and Presented 13.6 Writing about the Results 13.7 Methods 13.8 Discussion 13.9 How about a Conclusions Section? 13.10 Introduction 13.11 Abstract 13.12 Title 13.13 Putting It All Together 14. Oral and Poster Presentations 14.1 Historical Perspective 14.2 The Structure of Oral Presentations of Research 14.3 Visual Aids 14.4 How Much Text? 14.5 Tables and Figures for Presentations 14.6 Slide Style 14.7 Talking the Talk 14.8 Poster Presentations 14.9 Poster Graphics 14.10 Poster Layout and Display 14.11 Supporting Your Poster 15. Closing Thoughts Notes Index"
Michael H. Schmidt is a professor in the Department of Chemistry and Biochemistry at California State University, San Marcos.
Reviews for Being a Scientist: Tools for Science Students
Being a Scientist is wide in its scope, covering such topics as research ethics to scientific writing. Written with a more personable style, this book will help research trainees, and will be an excellent single resource for students. - Pasan Fernando, Department of Biology, Carleton University I've been arguing with Being a Scientist - and that's exactly what I suggest readers should do. It's even what Schmidt suggests (implicitly) readers should do, by including 'skepticism' in his treatment of scientific ethos. As Schmidt points out in his Introduction, few questions around how science is or should be done have clean and simple answers. Being a Scientist should start conversations - mentor with mentee, or labmate with labmate. I would have learned a lot from discussing this book early in my career. I learned some things reading it even now. - Stephen Heard, Department of Biology, University of New Brunswick Science faculty are not trained to teach writing, and that is a skill that needs to be developed if one is to teach such a course. Many science faculty feel that it is not possible to grade writing fairly or consistently. Furthermore, there is still an unfortunate attitude among some faculty that students should learn these skills by osmosis. Thus, the challenges are both in having faculty with the skills to teach such courses and overcoming the belief that such courses are not necessary. Being a Scientist addresses both issues. The discussion of overcoming doubts is excellent. Second, having rubrics, discussion guides, and explicit learning objectives at hand will be very useful for students in most science fields. - Penny J. Beuning, Department of Chemistry and Chemical Biology, Northeastern University