FREIGHT DELAYS IN AND OUT: MORE INFO

Close Notification

Your cart does not contain any items

$156.00

Paperback

We can order this in for you
How long will it take?

QTY:

Stata Press
10 May 2016
Mathematical & statistical software; Software Engineering
An Introduction to Survival Analysis Using Stata, Revised Third Edition is the ideal tutorial for professional data analysts who want to learn survival analysis for the first time or who are well versed in survival analysis but are not as dexterous in using Stata to analyze survival data. This text also serves as a valuable reference to those readers who already have experience using Stata's survival analysis routines.

The revised third edition has been updated for Stata 14, and it includes a new section on predictive margins and marginal effects, which demonstrates how to obtain and visualize marginal predictions and marginal effects using the margins and marginsplot commands after survival regression models.

Survival analysis is a field of its own that requires specialized data management and analysis procedures. To meet this requirement, Stata provides the st family of commands for organizing and summarizing survival data.

This book provides statistical theory, step-by-step procedures for analyzing survival data, an in-depth usage guide for Stata's most widely used st commands, and a collection of tips for using Stata to analyze survival data and to present the results. This book develops from first principles the statistical concepts unique to survival data and assumes only a knowledge of basic probability and statistics and a working knowledge of Stata.

The first three chapters of the text cover basic theoretical concepts: hazard functions, cumulative hazard functions, and their interpretations; survivor functions; hazard models; and a comparison of nonparametric, semiparametric, and parametric methodologies. Chapter 4 deals with censoring and truncation. The next three chapters cover the formatting, manipulation, stsetting, and error checking involved in preparing survival data for analysis using Stata's st analysis commands. Chapter 8 covers nonparametric methods, including the Kaplan-Meier and Nelson-Aalen estimators and the various nonparametric tests for the equality of survival experience.

Chapters 9-11 discuss Cox regression and include various examples of fitting a Cox model, obtaining predictions, interpreting results, building models, model diagnostics, and regression with survey data. The next four chapters cover parametric models, which are fit using Stata's streg command. These chapters include detailed derivations of all six parametric models currently supported in Stata and methods for determining which model is appropriate, as well as information on stratification, obtaining predictions, and advanced topics such as frailty models. Chapter 16 is devoted to power and sample-size calculations for survival studies. The final chapter covers survival analysis in the presence of competing risks.
By:   Mario Cleves (University of Arkansas for Medical Sciences Little Rock USA), William Gould (StataCorp LP, College Station, Texas, USA), Yulia Marchenko (StataCorp LP, College Station, Texas, USA)
Imprint:   Stata Press
Country of Publication:   United States
Edition:   4th New edition
Dimensions:   Height: 235mm,  Width: 187mm,  Spine: 28mm
Weight:   916g
ISBN:   9781597181747
ISBN 10:   1597181749
Pages:   428
Publication Date:   10 May 2016
Audience:   Professional and scholarly ,  Undergraduate
Format:   Paperback
Publisher's Status:   Active
The problem of survival analysis Parametric modelingã Semiparametric modeling Nonparametric analysisã Linking the three approaches Describing the distribution of failure times The survivor and hazard functions The quantile function Interpreting the cumulative hazard and hazard rate Means and medians Hazard models Parametric models Semiparametric models Analysis time (time at risk) Censoring and truncation Censoring Truncation Recording survival data The desired formatã Other formats Example: Wide-form snapshot data Using stset A short lesson on dates Purposes of the stset command Syntax of the stset command After stset Look at stset's output List some of your dataã Use stdescribe Use stvaryã Perhaps use stfillã Example: Hip-fracture data Nonparametric analysis Inadequacies of standard univariate methodsã The Kaplan-Meier estimator The Nelson-Aalen estimator Estimating the hazard function Estimating mean and median survival times Tests of hypothesis The Cox proportional hazards model Using stcox Likelihood calculations Stratified analysis Cox models with shared frailty Cox models with survey data Cox model with missing data-multiple imputation Model building using stcox Indicator variables Categorical variables Continuous variables Interactions Time-varying variables Modeling group effects: fixed-effects, random-effects, stratification, and clustering The Cox model: Diagnostics Testing the proportional-hazards assumption Residuals and diagnostic measures Reye's syndrome data Parametric models Motivation Classes of parametric models A survey of parametric regression models in Stata The exponential model Weibull regression Gompertz regression (PH metric) Lognormal regression (AFT metric) Loglogistic regression (AFT metric) Generalized gamma regression (AFT metric) Choosing among parametric models Postestimation commands for parametric models Use of predict after streg Using stcurve Predictive margins and marginal effects Generalizing the parametric regression model Frailty models Power and sample-size determination for survival analysis Estimating sample size Accounting for withdrawal and accrual of subjectsã Estimating power and effect sizeã Tabulating or graphing results Competing risks Cause-specific hazards Cumulative incidence functions Nonparametric analysis Semiparametric analysis Parametric analysis

Mario Cleves is Professor and the Biostatistics Section Chief in the Department of Pediatrics at the University of Arkansas for Medical Sciences. William Gould is the president and head of development at StataCorp. Yulia Marchenko is a senior statistician at StataCorp. All are authors of Stata statistical software, in particular, Stata's widely used survival analysis suite.

Reviews for An Introduction to Survival Analysis Using Stata, Revised Third Edition

This is an application-oriented introduction to survival analysis using Stata. The authors have focused on intuitions without getting into technical details. For example ... the rather mysterious partial likelihood was elegantly illustrated with a small dataset and simple derivations for conditional probabilities. The book provides an excellent coverage of commonly used nonparametric, semiparametric, and parametric analyses of survival data, with ample application examples. The implementation of each survival approach has been carefully laid out in Stata syntax and real data analyses. Moreover, the material covered in the book is surprisingly comprehensive, including Coxmodels with time-varying covariates, shared frailty models, multiple imputations, and competing risk regression. Those topics are often encountered in practice but usually missing from an introductory book of survival analysis. The revised third edition has been updated to reflect the welcome additions in Stata 14 relative to previous versions. ... The revised third edition provides not only an excellent tutorial to anyone who is interested in learning survival models with examples, but also an extremely handy reference to researchers who would like to perform survival analyses in Stata. -Yu Cheng, University of Pittsburgh, in The American Statistician, April 2018


See Also