FREIGHT DELAYS IN AND OUT: MORE INFO

Close Notification

Your cart does not contain any items

An Introduction to Goedel's Theorems

Peter Smith

$49.95

Paperback

In stock
Ready to ship

QTY:

Cambridge University Press
21 February 2013
Philosophy: logic; Mathematics & Sciences; Mathematical logic
In 1931, the young Kurt Goedel published his First Incompleteness Theorem, which tells us that, for any sufficiently rich theory of arithmetic, there are some arithmetical truths the theory cannot prove. This remarkable result is among the most intriguing (and most misunderstood) in logic. Goedel also outlined an equally significant Second Incompleteness Theorem. How are these Theorems established, and why do they matter? Peter Smith answers these questions by presenting an unusual variety of proofs for the First Theorem, showing how to prove the Second Theorem, and exploring a family of related results (including some not easily available elsewhere). The formal explanations are interwoven with discussions of the wider significance of the two Theorems. This book - extensively rewritten for its second edition - will be accessible to philosophy students with a limited formal background. It is equally suitable for mathematics students taking a first course in mathematical logic.
By:   Peter Smith
Imprint:   Cambridge University Press
Country of Publication:   United Kingdom
Edition:   2nd Revised edition
Dimensions:   Height: 246mm,  Width: 175mm,  Spine: 18mm
Weight:   790g
ISBN:   9781107606753
ISBN 10:   1107606756
Series:   Cambridge Introductions to Philosophy
Pages:   402
Publication Date:   21 February 2013
Audience:   Professional and scholarly ,  College/higher education ,  Undergraduate ,  Primary
Format:   Paperback
Publisher's Status:   Active
Preface; 1. What Goedel's theorems say; 2. Functions and enumerations; 3. Effective computability; 4. Effectively axiomatized theories; 5. Capturing numerical properties; 6. The truths of arithmetic; 7. Sufficiently strong arithmetics; 8. Interlude: taking stock; 9. Induction; 10. Two formalized arithmetics; 11. What Q can prove; 12. I o, an arithmetic with induction; 13. First-order Peano arithmetic; 14. Primitive recursive functions; 15. LA can express every p.r. function; 16. Capturing functions; 17. Q is p.r. adequate; 18. Interlude: a very little about Principia; 19. The arithmetization of syntax; 20. Arithmetization in more detail; 21. PA is incomplete; 22. Goedel's First Theorem; 23. Interlude: about the First Theorem; 24. The Diagonalization Lemma; 25. Rosser's proof; 26. Broadening the scope; 27. Tarski's Theorem; 28. Speed-up; 29. Second-order arithmetics; 30. Interlude: incompleteness and Isaacson's thesis; 31. Goedel's Second Theorem for PA; 32. On the 'unprovability of consistency'; 33. Generalizing the Second Theorem; 34. Loeb's Theorem and other matters; 35. Deriving the derivability conditions; 36. 'The best and most general version'; 37. Interlude: the Second Theorem, Hilbert, minds and machines; 38. -Recursive functions; 39. Q is recursively adequate; 40. Undecidability and incompleteness; 41. Turing machines; 42. Turing machines and recursiveness; 43. Halting and incompleteness; 44. The Church-Turing thesis; 45. Proving the thesis?; 46. Looking back.

Peter Smith was formerly Senior Lecturer in Philosophy at the University of Cambridge. His books include Explaining Chaos (1998) and An Introduction to Formal Logic (2003) and he is also a former editor of the journal Analysis.

Reviews for An Introduction to Goedel's Theorems

'Smith breathes new life into the work of Kurt Godel in this second edition ... Recommended. Upper-division undergraduates through professionals.' R. L. Pour, Choice


See Also