PERHAPS A GIFT VOUCHER FOR MUM?: MOTHER'S DAY

Close Notification

Your cart does not contain any items

$432.95

Paperback

Not in-store but you can order this
How long will it take?

QTY:

English
Elsevier - Health Sciences Division
15 December 2023
Series: Nanophotonics
All-Dielectric Nanophotonics aims to review the underlying principles, advances and future directions of research in the field. The book reviews progress in all-dielectric metasurfaces and nanoantennas, new types of excitations, such as magnetic and toroidal modes and associated anapole states. Ultrahigh-Q resonant modes such as bound states in the continuum are covered and the promise of replacing conventional bulky optical elements with nanometer-scale structures with enhanced functionality is discussed. This book is suitable for new entrants to the field as an overview of this research area. Experienced researchers and professionals in the field may also find this book suitable as a reference.

Edited by:   , , , , , , , ,
Imprint:   Elsevier - Health Sciences Division
Country of Publication:   United States
Dimensions:   Height: 235mm,  Width: 191mm, 
Weight:   1.000kg
ISBN:   9780323951951
ISBN 10:   0323951953
Series:   Nanophotonics
Pages:   428
Publication Date:  
Audience:   Professional and scholarly ,  Undergraduate
Format:   Paperback
Publisher's Status:   Active
1. Introduction 2. Theoretical background 3. Dielectric materials 4. Directional scattering of dielectric nanoantennas 5. Fano resonances in all-dielectric nanostructures 6. Non-radiating sources 7. Bound states in the continuum in dielectric resonators embedded into metallic waveguide 8. Exceptional points 9. Rational design of maximum chiral dielectric metasurfaces 10. Transparent phase dielectric metasurfaces 11. Nonlinear phenomena empowered by resonant dielectric nanostructures 12. Active nanophotonics 13. Summary, future perspectives, and new directions

Dr. Alexander Shalin is currently an Associate Professor at Riga Technical University and a Principal Researcher at Moscow Institute of Physics and Technology and Senior Researcher at Moscow State University. Dr. Shalin got his PhD in physics (Optics) in 2007 from Ulyanovsk State University, Russia. In 2014 he was awarded the title of Full Doctor of Sciences from ITMO University (Saint Petersburg). In 2015, he became the head of the Laboratory of ‘Nano-Optomechanics and NanoPhotonics’ at ITMO. He possesses significant scientific experience and has more than 150 publications in prestigious journals and several monographs. He has contributed extensively to the development of all-dielectric nanophotonics, including but not limited to the introduction of higher order toroidal moments and hybrid anapole states, studies on the optomechanical interactions of dielectric nanoparticles, or the first proposal of the unusual transverse Kerker effect. In 2017, he was recognized as Best Young Scientist in ITMO. Dr. Adria Canos Valero received his MSc in Materials Science and Engineering from the EEIGM (France). After a period at CERN (Switzerland) focused on the study of superconducting materials, he went ahead to pursue his passion in theoretical electromagnetism at ITMO University, where he recently acquired his Ph.D. His research is centered around the study of non-radiating sources and non-Hermitian effects arising in all-dielectric nanophotonic platforms. He has authored several interdisciplinary works on all-dielectric nanophotonics published in highly reputed journals. Among his most relevant contributions, together with his co-authors, he introduced and observed the non-radiating source known as Hybrid Anapole, proposed an on-chip all-dielectric scheme to mix fluid in nano volumes, and found a connection between symmetry breaking and super scattering mediated by bound states in the continuum. Dr. Andrey Miroshnichenko is currently a professor at UNSW Canberra in the School of Engineering & Information Technology. Professor Andrey Miroshnichenko received this Ph.D. in 2003 from the Max-Planck Institute for Physics of Complex Systems in Dresden (Germany) and joined in 2004 the Nonlinear Physics Center at ANU, Australia. During his career, he has made several fundamental contributions to the development of photonic crystals and played a crucial role in introducing the Fano resonance concept to nanophotonics. In 2017 he was awarded the renowned UNSW Scientia Fellowship, and joined the University of New South Wales in Canberra. He has authored or co-authored more than 250 journal publications and a book and several book chapters. His research interests encompass a wide range of topics within nonlinear nanophotonics, nonlinear optics, optical nanoantennas, metasurfaces and nanoclusters.

See Also