PERHAPS A GIFT VOUCHER FOR MUM?: MOTHER'S DAY

Close Notification

Your cart does not contain any items

$237.95

Hardback

Not in-store but you can order this
How long will it take?

QTY:

English
Cambridge University Press
16 February 2012
After decades of research, physicists now know how to detect Einstein's gravitational waves. Advanced gravitational wave detectors, the most sensitive instruments ever created, will be almost certain of detecting the births of black holes throughout the Universe. This book describes the physics of gravitational waves and their detectors. The book begins by introducing the physics of gravitational wave detection and the likely sources of detectable waves. Case studies on the first generation of large scale gravitational wave detectors introduce the technology and set the scene for a review of the experimental issues in creating advanced detectors in which the instrument's sensitivity is limited by Heisenberg's uncertainty principle. The book covers lasers, thermal noise, vibration isolation, interferometer control and stabilisation against opto-acoustic instabilities. This is a valuable reference for graduate students and researchers in physics and astrophysics entering this field.

Edited by:   , , , , , ,
Imprint:   Cambridge University Press
Country of Publication:   United Kingdom
Dimensions:   Height: 253mm,  Width: 180mm,  Spine: 19mm
Weight:   820g
ISBN:   9780521874298
ISBN 10:   0521874297
Pages:   344
Publication Date:  
Audience:   Professional and scholarly ,  Undergraduate
Format:   Hardback
Publisher's Status:   Active

D. G. Blair is Director of the Australian International Gravitational Research Centre (AIGRC), University of Western Australia. L. Ju is an Associate Professor at the Australian International Gravitational Research Centre, University of Western Australia. C. Zhao is Research Director of Gingin High Optical Power Facility (HOPF) and Associate Professor at the Australian International Gravitational Research Centre, University of Western Australia. E. J. Howell is a Research Fellow at the University of Western Australia.

Reviews for Advanced Gravitational Wave Detectors

Advance praise: 'This book is not only a monograph on advanced gravitational wave detectors and the astrophysical phenomena they will explore, it also contains a pedagogically fine introduction to the field of gravitational wave science. I recommend it to any budding or mature scientist or engineer who wants an overview of this exciting field and where it is going.' Kip S. Thorne, Feynman Professor of Theoretical Physics, Emeritus, California Institute of Technology 'Almost 100 years after Einstein introduced his Theory of General Relativity, we are finally on the threshold of making direct detections of gravitational waves ... Advanced Gravitational Wave Detectors gives us an up-to-date view of the science and techniques for making the first detections and then developing yet more sensitive future detectors ... This comprehensive review, written by experts in gravitational waves physics, covers these topics in depth and will serve as a very good introduction for students, while at the same time, being a valuable resource for practitioners in the field.' Barry C. Barish, Linde Professor of Physics, Emeritus, California Institute of Technology


See Also