OUR STORE IS CLOSED ON ANZAC DAY: THURSDAY 25 APRIL

Close Notification

Your cart does not contain any items

$128.95

Hardback

Not in-store but you can order this
How long will it take?

QTY:

English
Cambridge University Press
12 April 2018
Wick ordering of creation and annihilation operators is of fundamental importance for computing averages and correlations in quantum field theory and, by extension, in the Hudson–Parthasarathy theory of quantum stochastic processes, quantum mechanics, stochastic processes, and probability. This book develops the unified combinatorial framework behind these examples, starting with the simplest mathematically, and working up to the Fock space setting for quantum fields. Emphasizing ideas from combinatorics such as the role of lattice of partitions for multiple stochastic integrals by Wallstrom–Rota and combinatorial species by Joyal, it presents insights coming from quantum probability. It also introduces a 'field calculus' which acts as a succinct alternative to standard Feynman diagrams and formulates quantum field theory (cumulant moments, Dyson–Schwinger equation, tree expansions, 1-particle irreducibility) in this language. Featuring many worked examples, the book is aimed at mathematical physicists, quantum field theorists, and probabilists, including graduate and advanced undergraduate students.

By:   , ,
Imprint:   Cambridge University Press
Country of Publication:   United Kingdom
Dimensions:   Height: 234mm,  Width: 155mm,  Spine: 24mm
Weight:   620g
ISBN:   9781108416764
ISBN 10:   1108416764
Series:   Cambridge Studies in Advanced Mathematics
Pages:   338
Publication Date:  
Audience:   Professional and scholarly ,  Undergraduate
Format:   Hardback
Publisher's Status:   Active

John Gough is Professor of mathematical and theoretical physics at Aberystwyth University, Wales. He works in the field of quantum probability and open systems, especially quantum Markovian models that can be described in terms of the Hudson–Parthasarathy quantum stochastic calculus. His more recent work has been on the general theory of networks of quantum Markovian input-output and their applications to quantum feedback control. Joachim Kupsch is Professor Emeritus of theoretical physics at the Technische Universität Kaiserslautern, Germany. His research has focused on scattering theory, relativistic S-matrix theory, and infinite-dimensional analysis applied to quantum field theory. His publications have examined canonical transformations, fermionic integration, and superanalysis. His later work looks at open systems and decoherence and he coauthored a book on the subject in 2003.

Reviews for Quantum Fields and Processes: A Combinatorial Approach

'This book offers an excellent account of the probabilistic aspects of quantum theory, focused on the interplay between quantum field theory and quantum stochastic calculus. The text is highly accessible thanks to the careful choice of topics and the systematic use of elegant combinatorial and algebraic methods. This makes the book suitable for graduate level teaching and self-study. I highly recommend it as a timely addition to the classical literature on quantum probability.' Madalin Guta, University of Nottingham 'This book offers an excellent account of the probabilistic aspects of quantum theory, focused on the interplay between quantum field theory and quantum stochastic calculus. The text is highly accessible thanks to the careful choice of topics and the systematic use of elegant combinatorial and algebraic methods. This makes the book suitable for graduate level teaching and self-study. I highly recommend it as a timely addition to the classical literature on quantum probability.' Madalin Guta, University of Nottingham


See Also