LATEST DISCOUNTS & SALES: PROMOTIONS

Close Notification

Your cart does not contain any items

Optimization of Biological Sulphate Reduction to Treat Inorganic Wastewaters

Process Control and Potential Use of Methane as Electron Donor

Joana Cassidy

$221

Hardback

Not in-store but you can order this
How long will it take?

QTY:

English
CRC Press
27 September 2018
This work investigated two different approaches to optimize biological sulphate reduction in order to develop a process control strategy to optimize the input of an electron donor and to study how to increase the feasibility of using a cheap carbon source. Feast/famine regimes, applied to design the control strategy, were shown to induce the accumulation of storage compounds in the sulphate reducing biomass. This study showed that delays in the response time and a high control gain can be considered as the most critical factors affecting a sulphide control strategy in bioreactors. The delays are caused by the induction of different metabolic pathways in the anaerobic sludge, including the accumulation of storage products. On this basis, a mathematical model was developed and validated. This can be used to develop optimal control strategies. In order to understand the microbial pathways in the anaerobic oxidation of methane coupled to sulphate reduction (AOM-SR), diverse potential electron donors and acceptors were added to in vitro incubations of an AOM-SR enrichment at high pressure. Acetate was formed in the control group, probably resulting from the reduction of CO2. These results support the hypothesis that acetate may serve as an intermediate in the AOM-SR process.

By:  
Imprint:   CRC Press
Country of Publication:   United Kingdom
Dimensions:   Height: 246mm,  Width: 174mm, 
Weight:   453g
ISBN:   9781138373440
ISBN 10:   1138373443
Series:   IHE Delft PhD Thesis Series
Pages:   178
Publication Date:  
Audience:   College/higher education ,  Primary
Format:   Hardback
Publisher's Status:   Active

Joana Cassidy was born in 1986 in Porto, Portugal. In 2010, she concluded her BSc and MSc in Environmental Engineering at the University of Aveiro, Portugal. After graduation, she was awarded a Leonardo da Vinci scholarship and completed a seven month internship at UNESCO-IHE, The Netherlands. Having an increasing interest in wastewater treatment, innovation and development of new technologies, she started her PhD studies in 2011 on biological sulphate reduction within the Etecos3 doctoral programme. The research was carried out at UNESCO-IHE (The Netherlands), Jiao Tong Shanghai University (China) and the University of Naples (Italy).

See Also