PRIZES to win! PROMOTIONS

Close Notification

Your cart does not contain any items

Aerodynamics

A Computational Introduction

Krzysztof J. Fidkowski (University of Michigan, USA)

$207.95

Hardback

Forthcoming
Pre-Order now

QTY:

English
John Wiley & Sons Inc
24 December 2025
An expert and contemporary presentation of computational analysis and design tools for professionals studying or applying the principles of aerodynamics

In Aerodynamics: A Computational Introduction, a distinguished aerospace engineer and researcher Krzysztof Fidkowski delivers an up-to-date and authoritative reference text covering the essentials of aerodynamics. The book covers key topics, including basic fluid dynamics, potential flow, airfoil theory, boundary layers, wing theory, and compressible flow.

Fidkowski takes a computation-first approach to the subject matter, presenting aerodynamics in a way that is compatible with the way the subject is handled in contemporary businesses and research labs. Aerodynamics offers numerical demonstrations, codes, and theory comparisons that make important derivations and conclusions easier to understand and apply.

Readers will also find:

A self-contained introduction to the thermodynamics, mathematics, and numerical methods central to the subject of aerodynamics Comprehensive explorations of kinematics, dynamics, and potential flow Practical discussions of panel methods and airfoil theory, including design tools Numerical and analytical tools for boundary-layer analysis Complete treatment of finite-wing theory, including horseshoe vortices, lifting-line theory, and the vortex-lattice method.

Perfect for engineering students who want to learn how to apply basic numerical methods to large-scale aerodynamics problems, Aerodynamics: A Computational Introduction will also benefit professionals who wish to better understand aerodynamics and computational fluid dynamics.
By:  
Imprint:   John Wiley & Sons Inc
Country of Publication:   United States
ISBN:   9781394319961
ISBN 10:   1394319967
Pages:   304
Publication Date:  
Audience:   Professional and scholarly ,  Undergraduate
Format:   Hardback
Publisher's Status:   Forthcoming
Preface               v Contents           vii 1             Introduction    1 1.1        Physics of Fluids          1 1.2        Mathematics Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .          6 1.3        Numerical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .         19 1.4        Summary and Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    26 1.5        Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2             Kinematics      S1 2.1        The Material Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .        31 2.2        Flow Lines  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.3        Vorticity and Circulation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .      45 2.4        Conservation of Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .        48 2.5        Velocity Potential and Stream Function  . . . . . . . . . . . . . . . . . . . . . . .          51 2.6        Rotation and Deformation of a Fluid Element           . . . . . . . . . . . . . . . . . . .               57 2.7        Summary and Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    65 2.8        Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 S             Dynamics         69 3.1        Conservation of Momentum  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  69 3.2        Surface Forces  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .           74 3.3        The Navier-Stokes Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 3.4        A Finite-Difference Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    87 3.5        Bernoulli’s Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .         93 3.6        Streamline Curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .        100 3.7        Summary and Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    103 3.8        Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 4             Potential Flow               109 4.1        Formulation    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .             109 4.2        Elementary Flows  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .          116 4.3        Superposition                . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 4.4        Images and Motion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .          136 4.5        The Kutta-Joukowsky Theorem           . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 4.6        Summary and Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    146 4.7        Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 5             Airfoil Theory  151 5.1        Airfoil Nomenclature  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .         151   5.2        The Kutta Condition  152 5.3        Discrete Vortex Models           154 5.4        The Vortex-Panel Method       163 5.5        The Thin-Airfoil Model              170 5.6        Thin-Airfoil Solutions 174 5.7        Airfoil Design  184 5.8        Joukowsky Airfoils      190 5.9        Summary and Concepts        195 5.10     Problems          197   6             Boundary Layers          199 6.1        Effect of Viscosity  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .          199 6.2        Boundary-Layer Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    202 6.3        A Finite-Difference Boundary-Layer Solver . . . . . . . . . . . . . . . . . . . . .         208 6.4        Laminar Flow over a Flat Plate . . . . . . . . . . . . . . . . . . . . . . . . . . . .  213 6.5        Falkner-Skan Flows  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 6.6        The Integral Boundary-Layer Equation  . . . . . . . . . . . . . . . . . . . . . . .             235 6.7        Turbulent Boundary Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    244 6.8        Summary and Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    255 6.9        Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 7             Finite Wings    259 7.1        Fundamentals  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .            259 7.2        Horseshoe Vortices   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .        266 7.3        Lifting-Line Theory  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .           275 7.4        Lifting-Line Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .         281 7.5        Wing Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                290 7.6        The Vortex-Lattice Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     297 7.7        Trefftz-Plane Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .        302 7.8        Summary and Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    306 7.9        Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308 8             Compressible Flow    S11 8.1        Compressibility Effects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .      311 8.2        Compressible Potential Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  312 8.3        Subsonic Flow  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .            317 8.4        Supersonic Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .           322 8.5        Airfoil Design  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334 8.6        Wing Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                339 8.7        Summary and Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    348 8.8        Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350 Bibliography   S5S Alphabetical Index     S57

Krzysztof Fidkowski, PhD, is a Professor of Aerospace Engineering at the University of Michigan. He teaches aerodynamics, numerical methods, computational fluid dynamics, viscous and turbulent flow, and introductory aerospace engineering. His primary area of research is algorithmic development for computational fluid dynamics.

See Also